32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 7 234 243 790 108 622 878 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 7 234 243 790 108 622 878(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 7 234 243 790 108 622 878 ÷ 2 = 3 617 121 895 054 311 439 + 0;
  • 3 617 121 895 054 311 439 ÷ 2 = 1 808 560 947 527 155 719 + 1;
  • 1 808 560 947 527 155 719 ÷ 2 = 904 280 473 763 577 859 + 1;
  • 904 280 473 763 577 859 ÷ 2 = 452 140 236 881 788 929 + 1;
  • 452 140 236 881 788 929 ÷ 2 = 226 070 118 440 894 464 + 1;
  • 226 070 118 440 894 464 ÷ 2 = 113 035 059 220 447 232 + 0;
  • 113 035 059 220 447 232 ÷ 2 = 56 517 529 610 223 616 + 0;
  • 56 517 529 610 223 616 ÷ 2 = 28 258 764 805 111 808 + 0;
  • 28 258 764 805 111 808 ÷ 2 = 14 129 382 402 555 904 + 0;
  • 14 129 382 402 555 904 ÷ 2 = 7 064 691 201 277 952 + 0;
  • 7 064 691 201 277 952 ÷ 2 = 3 532 345 600 638 976 + 0;
  • 3 532 345 600 638 976 ÷ 2 = 1 766 172 800 319 488 + 0;
  • 1 766 172 800 319 488 ÷ 2 = 883 086 400 159 744 + 0;
  • 883 086 400 159 744 ÷ 2 = 441 543 200 079 872 + 0;
  • 441 543 200 079 872 ÷ 2 = 220 771 600 039 936 + 0;
  • 220 771 600 039 936 ÷ 2 = 110 385 800 019 968 + 0;
  • 110 385 800 019 968 ÷ 2 = 55 192 900 009 984 + 0;
  • 55 192 900 009 984 ÷ 2 = 27 596 450 004 992 + 0;
  • 27 596 450 004 992 ÷ 2 = 13 798 225 002 496 + 0;
  • 13 798 225 002 496 ÷ 2 = 6 899 112 501 248 + 0;
  • 6 899 112 501 248 ÷ 2 = 3 449 556 250 624 + 0;
  • 3 449 556 250 624 ÷ 2 = 1 724 778 125 312 + 0;
  • 1 724 778 125 312 ÷ 2 = 862 389 062 656 + 0;
  • 862 389 062 656 ÷ 2 = 431 194 531 328 + 0;
  • 431 194 531 328 ÷ 2 = 215 597 265 664 + 0;
  • 215 597 265 664 ÷ 2 = 107 798 632 832 + 0;
  • 107 798 632 832 ÷ 2 = 53 899 316 416 + 0;
  • 53 899 316 416 ÷ 2 = 26 949 658 208 + 0;
  • 26 949 658 208 ÷ 2 = 13 474 829 104 + 0;
  • 13 474 829 104 ÷ 2 = 6 737 414 552 + 0;
  • 6 737 414 552 ÷ 2 = 3 368 707 276 + 0;
  • 3 368 707 276 ÷ 2 = 1 684 353 638 + 0;
  • 1 684 353 638 ÷ 2 = 842 176 819 + 0;
  • 842 176 819 ÷ 2 = 421 088 409 + 1;
  • 421 088 409 ÷ 2 = 210 544 204 + 1;
  • 210 544 204 ÷ 2 = 105 272 102 + 0;
  • 105 272 102 ÷ 2 = 52 636 051 + 0;
  • 52 636 051 ÷ 2 = 26 318 025 + 1;
  • 26 318 025 ÷ 2 = 13 159 012 + 1;
  • 13 159 012 ÷ 2 = 6 579 506 + 0;
  • 6 579 506 ÷ 2 = 3 289 753 + 0;
  • 3 289 753 ÷ 2 = 1 644 876 + 1;
  • 1 644 876 ÷ 2 = 822 438 + 0;
  • 822 438 ÷ 2 = 411 219 + 0;
  • 411 219 ÷ 2 = 205 609 + 1;
  • 205 609 ÷ 2 = 102 804 + 1;
  • 102 804 ÷ 2 = 51 402 + 0;
  • 51 402 ÷ 2 = 25 701 + 0;
  • 25 701 ÷ 2 = 12 850 + 1;
  • 12 850 ÷ 2 = 6 425 + 0;
  • 6 425 ÷ 2 = 3 212 + 1;
  • 3 212 ÷ 2 = 1 606 + 0;
  • 1 606 ÷ 2 = 803 + 0;
  • 803 ÷ 2 = 401 + 1;
  • 401 ÷ 2 = 200 + 1;
  • 200 ÷ 2 = 100 + 0;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


7 234 243 790 108 622 878(10) =


110 0100 0110 0101 0011 0010 0110 0110 0000 0000 0000 0000 0000 0000 0001 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 62 positions to the left, so that only one non zero digit remains to the left of it:


7 234 243 790 108 622 878(10) =


110 0100 0110 0101 0011 0010 0110 0110 0000 0000 0000 0000 0000 0000 0001 1110(2) =


110 0100 0110 0101 0011 0010 0110 0110 0000 0000 0000 0000 0000 0000 0001 1110(2) × 20 =


1.1001 0001 1001 0100 1100 1001 1001 1000 0000 0000 0000 0000 0000 0000 0111 10(2) × 262


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 62


Mantissa (not normalized):
1.1001 0001 1001 0100 1100 1001 1001 1000 0000 0000 0000 0000 0000 0000 0111 10


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


62 + 2(8-1) - 1 =


(62 + 127)(10) =


189(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 189 ÷ 2 = 94 + 1;
  • 94 ÷ 2 = 47 + 0;
  • 47 ÷ 2 = 23 + 1;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


189(10) =


1011 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1000 1100 1010 0110 0100 110 0110 0000 0000 0000 0000 0000 0000 0001 1110 =


100 1000 1100 1010 0110 0100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1011 1101


Mantissa (23 bits) =
100 1000 1100 1010 0110 0100


The base ten decimal number 7 234 243 790 108 622 878 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1011 1101 - 100 1000 1100 1010 0110 0100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 268 263 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 000 010 001 110 009 999 999 999 999 956 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 122 521 889 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 011 101 110 001 011 001 010 000 110 023 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 100 001 010 111 011 077 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 507 597 728 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 011 101 039 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 3.141 592 653 589 793 115 997 963 468 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 29 288 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 0.015 449 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111