32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 010 001 110 009 999 999 999 999 956 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 010 001 110 009 999 999 999 999 956(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 010 001 110 009 999 999 999 999 956 ÷ 2 = 500 005 000 555 004 999 999 999 999 978 + 0;
  • 500 005 000 555 004 999 999 999 999 978 ÷ 2 = 250 002 500 277 502 499 999 999 999 989 + 0;
  • 250 002 500 277 502 499 999 999 999 989 ÷ 2 = 125 001 250 138 751 249 999 999 999 994 + 1;
  • 125 001 250 138 751 249 999 999 999 994 ÷ 2 = 62 500 625 069 375 624 999 999 999 997 + 0;
  • 62 500 625 069 375 624 999 999 999 997 ÷ 2 = 31 250 312 534 687 812 499 999 999 998 + 1;
  • 31 250 312 534 687 812 499 999 999 998 ÷ 2 = 15 625 156 267 343 906 249 999 999 999 + 0;
  • 15 625 156 267 343 906 249 999 999 999 ÷ 2 = 7 812 578 133 671 953 124 999 999 999 + 1;
  • 7 812 578 133 671 953 124 999 999 999 ÷ 2 = 3 906 289 066 835 976 562 499 999 999 + 1;
  • 3 906 289 066 835 976 562 499 999 999 ÷ 2 = 1 953 144 533 417 988 281 249 999 999 + 1;
  • 1 953 144 533 417 988 281 249 999 999 ÷ 2 = 976 572 266 708 994 140 624 999 999 + 1;
  • 976 572 266 708 994 140 624 999 999 ÷ 2 = 488 286 133 354 497 070 312 499 999 + 1;
  • 488 286 133 354 497 070 312 499 999 ÷ 2 = 244 143 066 677 248 535 156 249 999 + 1;
  • 244 143 066 677 248 535 156 249 999 ÷ 2 = 122 071 533 338 624 267 578 124 999 + 1;
  • 122 071 533 338 624 267 578 124 999 ÷ 2 = 61 035 766 669 312 133 789 062 499 + 1;
  • 61 035 766 669 312 133 789 062 499 ÷ 2 = 30 517 883 334 656 066 894 531 249 + 1;
  • 30 517 883 334 656 066 894 531 249 ÷ 2 = 15 258 941 667 328 033 447 265 624 + 1;
  • 15 258 941 667 328 033 447 265 624 ÷ 2 = 7 629 470 833 664 016 723 632 812 + 0;
  • 7 629 470 833 664 016 723 632 812 ÷ 2 = 3 814 735 416 832 008 361 816 406 + 0;
  • 3 814 735 416 832 008 361 816 406 ÷ 2 = 1 907 367 708 416 004 180 908 203 + 0;
  • 1 907 367 708 416 004 180 908 203 ÷ 2 = 953 683 854 208 002 090 454 101 + 1;
  • 953 683 854 208 002 090 454 101 ÷ 2 = 476 841 927 104 001 045 227 050 + 1;
  • 476 841 927 104 001 045 227 050 ÷ 2 = 238 420 963 552 000 522 613 525 + 0;
  • 238 420 963 552 000 522 613 525 ÷ 2 = 119 210 481 776 000 261 306 762 + 1;
  • 119 210 481 776 000 261 306 762 ÷ 2 = 59 605 240 888 000 130 653 381 + 0;
  • 59 605 240 888 000 130 653 381 ÷ 2 = 29 802 620 444 000 065 326 690 + 1;
  • 29 802 620 444 000 065 326 690 ÷ 2 = 14 901 310 222 000 032 663 345 + 0;
  • 14 901 310 222 000 032 663 345 ÷ 2 = 7 450 655 111 000 016 331 672 + 1;
  • 7 450 655 111 000 016 331 672 ÷ 2 = 3 725 327 555 500 008 165 836 + 0;
  • 3 725 327 555 500 008 165 836 ÷ 2 = 1 862 663 777 750 004 082 918 + 0;
  • 1 862 663 777 750 004 082 918 ÷ 2 = 931 331 888 875 002 041 459 + 0;
  • 931 331 888 875 002 041 459 ÷ 2 = 465 665 944 437 501 020 729 + 1;
  • 465 665 944 437 501 020 729 ÷ 2 = 232 832 972 218 750 510 364 + 1;
  • 232 832 972 218 750 510 364 ÷ 2 = 116 416 486 109 375 255 182 + 0;
  • 116 416 486 109 375 255 182 ÷ 2 = 58 208 243 054 687 627 591 + 0;
  • 58 208 243 054 687 627 591 ÷ 2 = 29 104 121 527 343 813 795 + 1;
  • 29 104 121 527 343 813 795 ÷ 2 = 14 552 060 763 671 906 897 + 1;
  • 14 552 060 763 671 906 897 ÷ 2 = 7 276 030 381 835 953 448 + 1;
  • 7 276 030 381 835 953 448 ÷ 2 = 3 638 015 190 917 976 724 + 0;
  • 3 638 015 190 917 976 724 ÷ 2 = 1 819 007 595 458 988 362 + 0;
  • 1 819 007 595 458 988 362 ÷ 2 = 909 503 797 729 494 181 + 0;
  • 909 503 797 729 494 181 ÷ 2 = 454 751 898 864 747 090 + 1;
  • 454 751 898 864 747 090 ÷ 2 = 227 375 949 432 373 545 + 0;
  • 227 375 949 432 373 545 ÷ 2 = 113 687 974 716 186 772 + 1;
  • 113 687 974 716 186 772 ÷ 2 = 56 843 987 358 093 386 + 0;
  • 56 843 987 358 093 386 ÷ 2 = 28 421 993 679 046 693 + 0;
  • 28 421 993 679 046 693 ÷ 2 = 14 210 996 839 523 346 + 1;
  • 14 210 996 839 523 346 ÷ 2 = 7 105 498 419 761 673 + 0;
  • 7 105 498 419 761 673 ÷ 2 = 3 552 749 209 880 836 + 1;
  • 3 552 749 209 880 836 ÷ 2 = 1 776 374 604 940 418 + 0;
  • 1 776 374 604 940 418 ÷ 2 = 888 187 302 470 209 + 0;
  • 888 187 302 470 209 ÷ 2 = 444 093 651 235 104 + 1;
  • 444 093 651 235 104 ÷ 2 = 222 046 825 617 552 + 0;
  • 222 046 825 617 552 ÷ 2 = 111 023 412 808 776 + 0;
  • 111 023 412 808 776 ÷ 2 = 55 511 706 404 388 + 0;
  • 55 511 706 404 388 ÷ 2 = 27 755 853 202 194 + 0;
  • 27 755 853 202 194 ÷ 2 = 13 877 926 601 097 + 0;
  • 13 877 926 601 097 ÷ 2 = 6 938 963 300 548 + 1;
  • 6 938 963 300 548 ÷ 2 = 3 469 481 650 274 + 0;
  • 3 469 481 650 274 ÷ 2 = 1 734 740 825 137 + 0;
  • 1 734 740 825 137 ÷ 2 = 867 370 412 568 + 1;
  • 867 370 412 568 ÷ 2 = 433 685 206 284 + 0;
  • 433 685 206 284 ÷ 2 = 216 842 603 142 + 0;
  • 216 842 603 142 ÷ 2 = 108 421 301 571 + 0;
  • 108 421 301 571 ÷ 2 = 54 210 650 785 + 1;
  • 54 210 650 785 ÷ 2 = 27 105 325 392 + 1;
  • 27 105 325 392 ÷ 2 = 13 552 662 696 + 0;
  • 13 552 662 696 ÷ 2 = 6 776 331 348 + 0;
  • 6 776 331 348 ÷ 2 = 3 388 165 674 + 0;
  • 3 388 165 674 ÷ 2 = 1 694 082 837 + 0;
  • 1 694 082 837 ÷ 2 = 847 041 418 + 1;
  • 847 041 418 ÷ 2 = 423 520 709 + 0;
  • 423 520 709 ÷ 2 = 211 760 354 + 1;
  • 211 760 354 ÷ 2 = 105 880 177 + 0;
  • 105 880 177 ÷ 2 = 52 940 088 + 1;
  • 52 940 088 ÷ 2 = 26 470 044 + 0;
  • 26 470 044 ÷ 2 = 13 235 022 + 0;
  • 13 235 022 ÷ 2 = 6 617 511 + 0;
  • 6 617 511 ÷ 2 = 3 308 755 + 1;
  • 3 308 755 ÷ 2 = 1 654 377 + 1;
  • 1 654 377 ÷ 2 = 827 188 + 1;
  • 827 188 ÷ 2 = 413 594 + 0;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 010 001 110 009 999 999 999 999 956(10) =


1100 1001 1111 0011 0100 1110 0010 1010 0001 1000 1001 0000 0100 1010 0101 0001 1100 1100 0101 0101 1000 1111 1111 1101 0100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 010 001 110 009 999 999 999 999 956(10) =


1100 1001 1111 0011 0100 1110 0010 1010 0001 1000 1001 0000 0100 1010 0101 0001 1100 1100 0101 0101 1000 1111 1111 1101 0100(2) =


1100 1001 1111 0011 0100 1110 0010 1010 0001 1000 1001 0000 0100 1010 0101 0001 1100 1100 0101 0101 1000 1111 1111 1101 0100(2) × 20 =


1.1001 0011 1110 0110 1001 1100 0101 0100 0011 0001 0010 0000 1001 0100 1010 0011 1001 1000 1010 1011 0001 1111 1111 1010 100(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1001 1100 0101 0100 0011 0001 0010 0000 1001 0100 1010 0011 1001 1000 1010 1011 0001 1111 1111 1010 100


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0100 1110 0010 1010 0001 1000 1001 0000 0100 1010 0101 0001 1100 1100 0101 0101 1000 1111 1111 1101 0100 =


100 1001 1111 0011 0100 1110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0100 1110


The base ten decimal number 1 000 010 001 110 009 999 999 999 999 956 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0011 0100 1110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 268 263 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 122 521 889 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 011 101 110 001 011 001 010 000 110 023 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 100 001 010 111 011 077 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 507 597 728 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1 011 101 039 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 3.141 592 653 589 793 115 997 963 468 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 29 288 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 0.015 449 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
Number 1.15 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 01:36 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111