32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard Converter to Decimal

Convert 32 bit single precision IEEE 754 binary floating point representation standard to decimal. Use the form below



32 bit single precision IEEE 754 binary floating point representation standard numbers...

... require three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (8 bits) and mantissa (23 bits).

The latest 32 bit single precision IEEE 754 binary floating point representation standard numbers converted and written as decimal numbers

Convert 0 - 0100 0110 - 101 0000 0000 0000 0010 1001, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:56 UTC (GMT)
Convert 1 - 1000 0010 - 000 1011 1010 0000 0000 0011, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:55 UTC (GMT)
Convert 1 - 1111 0110 - 111 1100 1000 1101 1110 0100, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:52 UTC (GMT)
Convert 1 - 1000 0010 - 000 1011 1010 0000 0000 0011, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:49 UTC (GMT)
Convert 1 - 1111 0110 - 111 1100 1000 1101 1110 0100, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:49 UTC (GMT)
Convert 1 - 1000 0010 - 000 1011 1010 0000 0000 0011, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:47 UTC (GMT)
Convert 1 - 1000 0110 - 101 0010 1001 0000 0000 0110, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:43 UTC (GMT)
Convert 1 - 0101 1101 - 110 1010 1111 1111 1001 0011, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:33 UTC (GMT)
Convert 1 - 0101 1101 - 110 1010 1111 1111 1001 0011, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:30 UTC (GMT)
Convert 0 - 1000 0101 - 011 1100 0011 0111 0000 1100, 32 bit single precision IEEE 754 binary floating point representation standard, to decimal Nov 07 17:23 UTC (GMT)
» Calculations Performed by Our Visitors: 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal Numbers. Data organized on a Monthly Basis

How to convert 32 bit single precision IEEE 754 binary floating point standard numbers to decimal system in base 10

Follow the steps below to convert a number from 32 bit single precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the three elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 8 bits contain the exponent.
    The last 23 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(8 - 1) - 1 = 127, that is due to the 8 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the single precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 from 32 bit single precision IEEE 754 binary floating point system to base 10 decimal system (float):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 8 bits contain the exponent: 1000 0001
    The last 23 bits contain the mantissa: 100 0001 0000 0010 0000 0000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    1000 0001(2) =
    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
    128 + 1 =
    129(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(8 - 1) - 1 = 127, that is due to the 8 bit excess/bias notation:
    Exponent adjusted = 129 - 127 = 2
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    100 0001 0000 0010 0000 0000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
    0.5 + 0.007 812 5 + 0.000 061 035 156 25 =
    0.507 873 535 156 25(10)
  • 5. Put all the numbers into expression to calculate the single precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.507 873 535 156 25) × 22 =
    -1.507 873 535 156 25 × 22 =
    -6.031 494 140 625
  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 converted from 32 bit single precision IEEE 754 binary floating point representation to decimal number (float) in decimal system (in base 10) = -6.031 494 140 625(10)