# Converter of signed binary numbers: converting to decimal system integers (base ten)

## Latest signed binary numbers converted to signed integers in decimal system (base ten)

 0100 0001 0101 0110 0000 0000 0000 0110 = 1,096,155,142 Jun 26 20:38 UTC (GMT) 1001 1010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = -1,945,555,039,024,054,271 Jun 26 20:37 UTC (GMT) 1011 0001 1110 1110 0010 0100 0001 1001 = -837,690,393 Jun 26 20:37 UTC (GMT) 0000 0000 1000 0000 0000 0001 0000 1110 = 8,388,878 Jun 26 20:37 UTC (GMT) 0010 1011 0010 0110 = 11,046 Jun 26 20:36 UTC (GMT) 0000 0000 0000 0000 0000 0111 1111 1010 0000 0000 0000 0000 0000 0000 0010 0111 = 8,770,323,218,471 Jun 26 20:36 UTC (GMT) 1100 0001 0101 1101 1111 1111 1111 1000 = -1,096,679,416 Jun 26 20:35 UTC (GMT) 1000 0110 0000 0001 = -1,537 Jun 26 20:35 UTC (GMT) 0000 0000 0000 1000 0000 0011 1100 0000 0000 1111 1010 0001 0000 0011 1111 0011 = 2,255,923,244,499,955 Jun 26 20:35 UTC (GMT) 1011 0010 0101 0100 = -12,884 Jun 26 20:35 UTC (GMT) 0110 1110 0011 1011 = 28,219 Jun 26 20:34 UTC (GMT) 0001 0100 0111 0011 = 5,235 Jun 26 20:34 UTC (GMT) 0010 1011 0010 0110 = 11,046 Jun 26 20:34 UTC (GMT) All the converted signed binary numbers to integers in base ten

## How to convert signed binary numbers from binary system to decimal (base ten)

### To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

• In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
• Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
•  powers of 2: 6 5 4 3 2 1 0 digits: 1 0 0 1 1 1 1 0
• Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign: