Converter of 64 bit double precision IEEE 754 binary floating point standard system numbers: converting to base ten decimal (double)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 100 1100 1100 - 1100 1100 1100 1100 1110 1100 1100 1100 0001 0000 1100 0110 0000 = -92 559 729 420 238 819 161 529 508 229 666 862 439 337 676 554 375 889 342 693 376 Jan 29 15:46 UTC (GMT)
1 - 100 1001 1000 - 1101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -20 784 294 525 030 540 767 911 289 430 108 272 923 573 747 712 Jan 29 15:46 UTC (GMT)
0 - 100 0000 0001 - 0001 1000 0100 1110 0111 1001 0000 1001 1100 0110 0001 0101 0011 = 4.379 789 599 938 095 356 890 244 147 507 473 826 408 386 230 468 75 Jan 29 15:46 UTC (GMT)
0 - 011 1111 1100 - 0100 1111 1111 1001 1110 0010 0000 1110 0000 0000 0000 0000 0000 = 0.164 050 832 798 238 843 679 428 100 585 937 5 Jan 29 15:45 UTC (GMT)
0 - 001 1110 1100 - 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 284 510 949 271 248 623 859 687 392 501 813 068 810 958 502 730 241 141 991 882 520 801 061 797 598 820 842 204 816 109 459 985 301 543 026 198 443 940 867 918 310 762 523 955 571 129 048 645 411 9 Jan 29 15:45 UTC (GMT)
0 - 100 0000 0001 - 1011 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 6.968 75 Jan 29 15:44 UTC (GMT)
0 - 011 1110 1100 - 1111 1111 0101 0011 1000 1111 0000 0000 0000 0000 0000 0000 0000 = 0.000 003 809 678 560 173 779 260 367 155 075 073 242 187 5 Jan 29 15:43 UTC (GMT)
1 - 101 0101 0101 - 1101 0110 0101 0101 0100 1111 0100 1011 0101 0100 1010 1110 1010 = -16 459 787 562 721 984 015 130 607 493 600 327 052 764 618 936 907 922 968 639 483 107 780 598 244 932 451 683 967 159 199 635 014 156 288 Jan 29 15:43 UTC (GMT)
0 - 011 1111 1110 - 1100 1001 0000 1111 1101 1010 1010 0010 0010 0001 0110 1000 1100 = 0.892 699 081 698 724 139 499 745 433 568 023 145 198 822 021 484 375 Jan 29 15:43 UTC (GMT)
0 - 000 0001 0001 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 822 7 Jan 29 15:41 UTC (GMT)
1 - 100 0000 1110 - 1000 1001 0001 0100 0000 0100 0000 0010 0000 0000 1000 0000 0000 = -50 314.007 827 773 690 223 693 847 656 25 Jan 29 15:41 UTC (GMT)
1 - 011 1111 1000 - 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 0000 = -0.014 062 499 999 999 977 795 539 507 496 869 191 527 366 638 183 593 75 Jan 29 15:41 UTC (GMT)
0 - 110 0000 0000 - 1011 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 46 298 836 758 083 030 609 466 555 071 929 562 408 952 185 099 233 108 382 451 673 110 351 716 416 347 716 904 268 972 185 857 588 398 742 141 260 300 209 644 354 368 876 585 002 999 346 278 694 224 134 144 Jan 29 15:41 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)