32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 129 851 094 501 394 750 983 760 893 760 831 472 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 129 851 094 501 394 750 983 760 893 760 831 472(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 129 851 094 501 394 750 983 760 893 760 831 472 ÷ 2 = 64 925 547 250 697 375 491 880 446 880 415 736 + 0;
  • 64 925 547 250 697 375 491 880 446 880 415 736 ÷ 2 = 32 462 773 625 348 687 745 940 223 440 207 868 + 0;
  • 32 462 773 625 348 687 745 940 223 440 207 868 ÷ 2 = 16 231 386 812 674 343 872 970 111 720 103 934 + 0;
  • 16 231 386 812 674 343 872 970 111 720 103 934 ÷ 2 = 8 115 693 406 337 171 936 485 055 860 051 967 + 0;
  • 8 115 693 406 337 171 936 485 055 860 051 967 ÷ 2 = 4 057 846 703 168 585 968 242 527 930 025 983 + 1;
  • 4 057 846 703 168 585 968 242 527 930 025 983 ÷ 2 = 2 028 923 351 584 292 984 121 263 965 012 991 + 1;
  • 2 028 923 351 584 292 984 121 263 965 012 991 ÷ 2 = 1 014 461 675 792 146 492 060 631 982 506 495 + 1;
  • 1 014 461 675 792 146 492 060 631 982 506 495 ÷ 2 = 507 230 837 896 073 246 030 315 991 253 247 + 1;
  • 507 230 837 896 073 246 030 315 991 253 247 ÷ 2 = 253 615 418 948 036 623 015 157 995 626 623 + 1;
  • 253 615 418 948 036 623 015 157 995 626 623 ÷ 2 = 126 807 709 474 018 311 507 578 997 813 311 + 1;
  • 126 807 709 474 018 311 507 578 997 813 311 ÷ 2 = 63 403 854 737 009 155 753 789 498 906 655 + 1;
  • 63 403 854 737 009 155 753 789 498 906 655 ÷ 2 = 31 701 927 368 504 577 876 894 749 453 327 + 1;
  • 31 701 927 368 504 577 876 894 749 453 327 ÷ 2 = 15 850 963 684 252 288 938 447 374 726 663 + 1;
  • 15 850 963 684 252 288 938 447 374 726 663 ÷ 2 = 7 925 481 842 126 144 469 223 687 363 331 + 1;
  • 7 925 481 842 126 144 469 223 687 363 331 ÷ 2 = 3 962 740 921 063 072 234 611 843 681 665 + 1;
  • 3 962 740 921 063 072 234 611 843 681 665 ÷ 2 = 1 981 370 460 531 536 117 305 921 840 832 + 1;
  • 1 981 370 460 531 536 117 305 921 840 832 ÷ 2 = 990 685 230 265 768 058 652 960 920 416 + 0;
  • 990 685 230 265 768 058 652 960 920 416 ÷ 2 = 495 342 615 132 884 029 326 480 460 208 + 0;
  • 495 342 615 132 884 029 326 480 460 208 ÷ 2 = 247 671 307 566 442 014 663 240 230 104 + 0;
  • 247 671 307 566 442 014 663 240 230 104 ÷ 2 = 123 835 653 783 221 007 331 620 115 052 + 0;
  • 123 835 653 783 221 007 331 620 115 052 ÷ 2 = 61 917 826 891 610 503 665 810 057 526 + 0;
  • 61 917 826 891 610 503 665 810 057 526 ÷ 2 = 30 958 913 445 805 251 832 905 028 763 + 0;
  • 30 958 913 445 805 251 832 905 028 763 ÷ 2 = 15 479 456 722 902 625 916 452 514 381 + 1;
  • 15 479 456 722 902 625 916 452 514 381 ÷ 2 = 7 739 728 361 451 312 958 226 257 190 + 1;
  • 7 739 728 361 451 312 958 226 257 190 ÷ 2 = 3 869 864 180 725 656 479 113 128 595 + 0;
  • 3 869 864 180 725 656 479 113 128 595 ÷ 2 = 1 934 932 090 362 828 239 556 564 297 + 1;
  • 1 934 932 090 362 828 239 556 564 297 ÷ 2 = 967 466 045 181 414 119 778 282 148 + 1;
  • 967 466 045 181 414 119 778 282 148 ÷ 2 = 483 733 022 590 707 059 889 141 074 + 0;
  • 483 733 022 590 707 059 889 141 074 ÷ 2 = 241 866 511 295 353 529 944 570 537 + 0;
  • 241 866 511 295 353 529 944 570 537 ÷ 2 = 120 933 255 647 676 764 972 285 268 + 1;
  • 120 933 255 647 676 764 972 285 268 ÷ 2 = 60 466 627 823 838 382 486 142 634 + 0;
  • 60 466 627 823 838 382 486 142 634 ÷ 2 = 30 233 313 911 919 191 243 071 317 + 0;
  • 30 233 313 911 919 191 243 071 317 ÷ 2 = 15 116 656 955 959 595 621 535 658 + 1;
  • 15 116 656 955 959 595 621 535 658 ÷ 2 = 7 558 328 477 979 797 810 767 829 + 0;
  • 7 558 328 477 979 797 810 767 829 ÷ 2 = 3 779 164 238 989 898 905 383 914 + 1;
  • 3 779 164 238 989 898 905 383 914 ÷ 2 = 1 889 582 119 494 949 452 691 957 + 0;
  • 1 889 582 119 494 949 452 691 957 ÷ 2 = 944 791 059 747 474 726 345 978 + 1;
  • 944 791 059 747 474 726 345 978 ÷ 2 = 472 395 529 873 737 363 172 989 + 0;
  • 472 395 529 873 737 363 172 989 ÷ 2 = 236 197 764 936 868 681 586 494 + 1;
  • 236 197 764 936 868 681 586 494 ÷ 2 = 118 098 882 468 434 340 793 247 + 0;
  • 118 098 882 468 434 340 793 247 ÷ 2 = 59 049 441 234 217 170 396 623 + 1;
  • 59 049 441 234 217 170 396 623 ÷ 2 = 29 524 720 617 108 585 198 311 + 1;
  • 29 524 720 617 108 585 198 311 ÷ 2 = 14 762 360 308 554 292 599 155 + 1;
  • 14 762 360 308 554 292 599 155 ÷ 2 = 7 381 180 154 277 146 299 577 + 1;
  • 7 381 180 154 277 146 299 577 ÷ 2 = 3 690 590 077 138 573 149 788 + 1;
  • 3 690 590 077 138 573 149 788 ÷ 2 = 1 845 295 038 569 286 574 894 + 0;
  • 1 845 295 038 569 286 574 894 ÷ 2 = 922 647 519 284 643 287 447 + 0;
  • 922 647 519 284 643 287 447 ÷ 2 = 461 323 759 642 321 643 723 + 1;
  • 461 323 759 642 321 643 723 ÷ 2 = 230 661 879 821 160 821 861 + 1;
  • 230 661 879 821 160 821 861 ÷ 2 = 115 330 939 910 580 410 930 + 1;
  • 115 330 939 910 580 410 930 ÷ 2 = 57 665 469 955 290 205 465 + 0;
  • 57 665 469 955 290 205 465 ÷ 2 = 28 832 734 977 645 102 732 + 1;
  • 28 832 734 977 645 102 732 ÷ 2 = 14 416 367 488 822 551 366 + 0;
  • 14 416 367 488 822 551 366 ÷ 2 = 7 208 183 744 411 275 683 + 0;
  • 7 208 183 744 411 275 683 ÷ 2 = 3 604 091 872 205 637 841 + 1;
  • 3 604 091 872 205 637 841 ÷ 2 = 1 802 045 936 102 818 920 + 1;
  • 1 802 045 936 102 818 920 ÷ 2 = 901 022 968 051 409 460 + 0;
  • 901 022 968 051 409 460 ÷ 2 = 450 511 484 025 704 730 + 0;
  • 450 511 484 025 704 730 ÷ 2 = 225 255 742 012 852 365 + 0;
  • 225 255 742 012 852 365 ÷ 2 = 112 627 871 006 426 182 + 1;
  • 112 627 871 006 426 182 ÷ 2 = 56 313 935 503 213 091 + 0;
  • 56 313 935 503 213 091 ÷ 2 = 28 156 967 751 606 545 + 1;
  • 28 156 967 751 606 545 ÷ 2 = 14 078 483 875 803 272 + 1;
  • 14 078 483 875 803 272 ÷ 2 = 7 039 241 937 901 636 + 0;
  • 7 039 241 937 901 636 ÷ 2 = 3 519 620 968 950 818 + 0;
  • 3 519 620 968 950 818 ÷ 2 = 1 759 810 484 475 409 + 0;
  • 1 759 810 484 475 409 ÷ 2 = 879 905 242 237 704 + 1;
  • 879 905 242 237 704 ÷ 2 = 439 952 621 118 852 + 0;
  • 439 952 621 118 852 ÷ 2 = 219 976 310 559 426 + 0;
  • 219 976 310 559 426 ÷ 2 = 109 988 155 279 713 + 0;
  • 109 988 155 279 713 ÷ 2 = 54 994 077 639 856 + 1;
  • 54 994 077 639 856 ÷ 2 = 27 497 038 819 928 + 0;
  • 27 497 038 819 928 ÷ 2 = 13 748 519 409 964 + 0;
  • 13 748 519 409 964 ÷ 2 = 6 874 259 704 982 + 0;
  • 6 874 259 704 982 ÷ 2 = 3 437 129 852 491 + 0;
  • 3 437 129 852 491 ÷ 2 = 1 718 564 926 245 + 1;
  • 1 718 564 926 245 ÷ 2 = 859 282 463 122 + 1;
  • 859 282 463 122 ÷ 2 = 429 641 231 561 + 0;
  • 429 641 231 561 ÷ 2 = 214 820 615 780 + 1;
  • 214 820 615 780 ÷ 2 = 107 410 307 890 + 0;
  • 107 410 307 890 ÷ 2 = 53 705 153 945 + 0;
  • 53 705 153 945 ÷ 2 = 26 852 576 972 + 1;
  • 26 852 576 972 ÷ 2 = 13 426 288 486 + 0;
  • 13 426 288 486 ÷ 2 = 6 713 144 243 + 0;
  • 6 713 144 243 ÷ 2 = 3 356 572 121 + 1;
  • 3 356 572 121 ÷ 2 = 1 678 286 060 + 1;
  • 1 678 286 060 ÷ 2 = 839 143 030 + 0;
  • 839 143 030 ÷ 2 = 419 571 515 + 0;
  • 419 571 515 ÷ 2 = 209 785 757 + 1;
  • 209 785 757 ÷ 2 = 104 892 878 + 1;
  • 104 892 878 ÷ 2 = 52 446 439 + 0;
  • 52 446 439 ÷ 2 = 26 223 219 + 1;
  • 26 223 219 ÷ 2 = 13 111 609 + 1;
  • 13 111 609 ÷ 2 = 6 555 804 + 1;
  • 6 555 804 ÷ 2 = 3 277 902 + 0;
  • 3 277 902 ÷ 2 = 1 638 951 + 0;
  • 1 638 951 ÷ 2 = 819 475 + 1;
  • 819 475 ÷ 2 = 409 737 + 1;
  • 409 737 ÷ 2 = 204 868 + 1;
  • 204 868 ÷ 2 = 102 434 + 0;
  • 102 434 ÷ 2 = 51 217 + 0;
  • 51 217 ÷ 2 = 25 608 + 1;
  • 25 608 ÷ 2 = 12 804 + 0;
  • 12 804 ÷ 2 = 6 402 + 0;
  • 6 402 ÷ 2 = 3 201 + 0;
  • 3 201 ÷ 2 = 1 600 + 1;
  • 1 600 ÷ 2 = 800 + 0;
  • 800 ÷ 2 = 400 + 0;
  • 400 ÷ 2 = 200 + 0;
  • 200 ÷ 2 = 100 + 0;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


129 851 094 501 394 750 983 760 893 760 831 472(10) =


1 1001 0000 0010 0010 0111 0011 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 116 positions to the left, so that only one non zero digit remains to the left of it:


129 851 094 501 394 750 983 760 893 760 831 472(10) =


1 1001 0000 0010 0010 0111 0011 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000(2) =


1 1001 0000 0010 0010 0111 0011 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000(2) × 20 =


1.1001 0000 0010 0010 0111 0011 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000(2) × 2116


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 116


Mantissa (not normalized):
1.1001 0000 0010 0010 0111 0011 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


116 + 2(8-1) - 1 =


(116 + 127)(10) =


243(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 243 ÷ 2 = 121 + 1;
  • 121 ÷ 2 = 60 + 1;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


243(10) =


1111 0011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1000 0001 0001 0011 1001 1 1011 0011 0010 0101 1000 0100 0100 0110 1000 1100 1011 1001 1111 0101 0101 0010 0110 1100 0000 1111 1111 1111 0000 =


100 1000 0001 0001 0011 1001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1111 0011


Mantissa (23 bits) =
100 1000 0001 0001 0011 1001


The base ten decimal number 129 851 094 501 394 750 983 760 893 760 831 472 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1111 0011 - 100 1000 0001 0001 0011 1001

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 43.65 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 1 710 611 318 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number -120 499 756 999 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 499 999 999 999 999 999 999 999 989 999 999 989 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 1 003 898 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 66 247 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 43 827 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 99 999.999 997 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 4 354.250 000 382 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number -592.4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111