32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 499 999 999 999 999 999 999 999 989 999 999 989 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 499 999 999 999 999 999 999 999 989 999 999 989(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 499 999 999 999 999 999 999 999 989 999 999 989 ÷ 2 = 249 999 999 999 999 999 999 999 994 999 999 994 + 1;
  • 249 999 999 999 999 999 999 999 994 999 999 994 ÷ 2 = 124 999 999 999 999 999 999 999 997 499 999 997 + 0;
  • 124 999 999 999 999 999 999 999 997 499 999 997 ÷ 2 = 62 499 999 999 999 999 999 999 998 749 999 998 + 1;
  • 62 499 999 999 999 999 999 999 998 749 999 998 ÷ 2 = 31 249 999 999 999 999 999 999 999 374 999 999 + 0;
  • 31 249 999 999 999 999 999 999 999 374 999 999 ÷ 2 = 15 624 999 999 999 999 999 999 999 687 499 999 + 1;
  • 15 624 999 999 999 999 999 999 999 687 499 999 ÷ 2 = 7 812 499 999 999 999 999 999 999 843 749 999 + 1;
  • 7 812 499 999 999 999 999 999 999 843 749 999 ÷ 2 = 3 906 249 999 999 999 999 999 999 921 874 999 + 1;
  • 3 906 249 999 999 999 999 999 999 921 874 999 ÷ 2 = 1 953 124 999 999 999 999 999 999 960 937 499 + 1;
  • 1 953 124 999 999 999 999 999 999 960 937 499 ÷ 2 = 976 562 499 999 999 999 999 999 980 468 749 + 1;
  • 976 562 499 999 999 999 999 999 980 468 749 ÷ 2 = 488 281 249 999 999 999 999 999 990 234 374 + 1;
  • 488 281 249 999 999 999 999 999 990 234 374 ÷ 2 = 244 140 624 999 999 999 999 999 995 117 187 + 0;
  • 244 140 624 999 999 999 999 999 995 117 187 ÷ 2 = 122 070 312 499 999 999 999 999 997 558 593 + 1;
  • 122 070 312 499 999 999 999 999 997 558 593 ÷ 2 = 61 035 156 249 999 999 999 999 998 779 296 + 1;
  • 61 035 156 249 999 999 999 999 998 779 296 ÷ 2 = 30 517 578 124 999 999 999 999 999 389 648 + 0;
  • 30 517 578 124 999 999 999 999 999 389 648 ÷ 2 = 15 258 789 062 499 999 999 999 999 694 824 + 0;
  • 15 258 789 062 499 999 999 999 999 694 824 ÷ 2 = 7 629 394 531 249 999 999 999 999 847 412 + 0;
  • 7 629 394 531 249 999 999 999 999 847 412 ÷ 2 = 3 814 697 265 624 999 999 999 999 923 706 + 0;
  • 3 814 697 265 624 999 999 999 999 923 706 ÷ 2 = 1 907 348 632 812 499 999 999 999 961 853 + 0;
  • 1 907 348 632 812 499 999 999 999 961 853 ÷ 2 = 953 674 316 406 249 999 999 999 980 926 + 1;
  • 953 674 316 406 249 999 999 999 980 926 ÷ 2 = 476 837 158 203 124 999 999 999 990 463 + 0;
  • 476 837 158 203 124 999 999 999 990 463 ÷ 2 = 238 418 579 101 562 499 999 999 995 231 + 1;
  • 238 418 579 101 562 499 999 999 995 231 ÷ 2 = 119 209 289 550 781 249 999 999 997 615 + 1;
  • 119 209 289 550 781 249 999 999 997 615 ÷ 2 = 59 604 644 775 390 624 999 999 998 807 + 1;
  • 59 604 644 775 390 624 999 999 998 807 ÷ 2 = 29 802 322 387 695 312 499 999 999 403 + 1;
  • 29 802 322 387 695 312 499 999 999 403 ÷ 2 = 14 901 161 193 847 656 249 999 999 701 + 1;
  • 14 901 161 193 847 656 249 999 999 701 ÷ 2 = 7 450 580 596 923 828 124 999 999 850 + 1;
  • 7 450 580 596 923 828 124 999 999 850 ÷ 2 = 3 725 290 298 461 914 062 499 999 925 + 0;
  • 3 725 290 298 461 914 062 499 999 925 ÷ 2 = 1 862 645 149 230 957 031 249 999 962 + 1;
  • 1 862 645 149 230 957 031 249 999 962 ÷ 2 = 931 322 574 615 478 515 624 999 981 + 0;
  • 931 322 574 615 478 515 624 999 981 ÷ 2 = 465 661 287 307 739 257 812 499 990 + 1;
  • 465 661 287 307 739 257 812 499 990 ÷ 2 = 232 830 643 653 869 628 906 249 995 + 0;
  • 232 830 643 653 869 628 906 249 995 ÷ 2 = 116 415 321 826 934 814 453 124 997 + 1;
  • 116 415 321 826 934 814 453 124 997 ÷ 2 = 58 207 660 913 467 407 226 562 498 + 1;
  • 58 207 660 913 467 407 226 562 498 ÷ 2 = 29 103 830 456 733 703 613 281 249 + 0;
  • 29 103 830 456 733 703 613 281 249 ÷ 2 = 14 551 915 228 366 851 806 640 624 + 1;
  • 14 551 915 228 366 851 806 640 624 ÷ 2 = 7 275 957 614 183 425 903 320 312 + 0;
  • 7 275 957 614 183 425 903 320 312 ÷ 2 = 3 637 978 807 091 712 951 660 156 + 0;
  • 3 637 978 807 091 712 951 660 156 ÷ 2 = 1 818 989 403 545 856 475 830 078 + 0;
  • 1 818 989 403 545 856 475 830 078 ÷ 2 = 909 494 701 772 928 237 915 039 + 0;
  • 909 494 701 772 928 237 915 039 ÷ 2 = 454 747 350 886 464 118 957 519 + 1;
  • 454 747 350 886 464 118 957 519 ÷ 2 = 227 373 675 443 232 059 478 759 + 1;
  • 227 373 675 443 232 059 478 759 ÷ 2 = 113 686 837 721 616 029 739 379 + 1;
  • 113 686 837 721 616 029 739 379 ÷ 2 = 56 843 418 860 808 014 869 689 + 1;
  • 56 843 418 860 808 014 869 689 ÷ 2 = 28 421 709 430 404 007 434 844 + 1;
  • 28 421 709 430 404 007 434 844 ÷ 2 = 14 210 854 715 202 003 717 422 + 0;
  • 14 210 854 715 202 003 717 422 ÷ 2 = 7 105 427 357 601 001 858 711 + 0;
  • 7 105 427 357 601 001 858 711 ÷ 2 = 3 552 713 678 800 500 929 355 + 1;
  • 3 552 713 678 800 500 929 355 ÷ 2 = 1 776 356 839 400 250 464 677 + 1;
  • 1 776 356 839 400 250 464 677 ÷ 2 = 888 178 419 700 125 232 338 + 1;
  • 888 178 419 700 125 232 338 ÷ 2 = 444 089 209 850 062 616 169 + 0;
  • 444 089 209 850 062 616 169 ÷ 2 = 222 044 604 925 031 308 084 + 1;
  • 222 044 604 925 031 308 084 ÷ 2 = 111 022 302 462 515 654 042 + 0;
  • 111 022 302 462 515 654 042 ÷ 2 = 55 511 151 231 257 827 021 + 0;
  • 55 511 151 231 257 827 021 ÷ 2 = 27 755 575 615 628 913 510 + 1;
  • 27 755 575 615 628 913 510 ÷ 2 = 13 877 787 807 814 456 755 + 0;
  • 13 877 787 807 814 456 755 ÷ 2 = 6 938 893 903 907 228 377 + 1;
  • 6 938 893 903 907 228 377 ÷ 2 = 3 469 446 951 953 614 188 + 1;
  • 3 469 446 951 953 614 188 ÷ 2 = 1 734 723 475 976 807 094 + 0;
  • 1 734 723 475 976 807 094 ÷ 2 = 867 361 737 988 403 547 + 0;
  • 867 361 737 988 403 547 ÷ 2 = 433 680 868 994 201 773 + 1;
  • 433 680 868 994 201 773 ÷ 2 = 216 840 434 497 100 886 + 1;
  • 216 840 434 497 100 886 ÷ 2 = 108 420 217 248 550 443 + 0;
  • 108 420 217 248 550 443 ÷ 2 = 54 210 108 624 275 221 + 1;
  • 54 210 108 624 275 221 ÷ 2 = 27 105 054 312 137 610 + 1;
  • 27 105 054 312 137 610 ÷ 2 = 13 552 527 156 068 805 + 0;
  • 13 552 527 156 068 805 ÷ 2 = 6 776 263 578 034 402 + 1;
  • 6 776 263 578 034 402 ÷ 2 = 3 388 131 789 017 201 + 0;
  • 3 388 131 789 017 201 ÷ 2 = 1 694 065 894 508 600 + 1;
  • 1 694 065 894 508 600 ÷ 2 = 847 032 947 254 300 + 0;
  • 847 032 947 254 300 ÷ 2 = 423 516 473 627 150 + 0;
  • 423 516 473 627 150 ÷ 2 = 211 758 236 813 575 + 0;
  • 211 758 236 813 575 ÷ 2 = 105 879 118 406 787 + 1;
  • 105 879 118 406 787 ÷ 2 = 52 939 559 203 393 + 1;
  • 52 939 559 203 393 ÷ 2 = 26 469 779 601 696 + 1;
  • 26 469 779 601 696 ÷ 2 = 13 234 889 800 848 + 0;
  • 13 234 889 800 848 ÷ 2 = 6 617 444 900 424 + 0;
  • 6 617 444 900 424 ÷ 2 = 3 308 722 450 212 + 0;
  • 3 308 722 450 212 ÷ 2 = 1 654 361 225 106 + 0;
  • 1 654 361 225 106 ÷ 2 = 827 180 612 553 + 0;
  • 827 180 612 553 ÷ 2 = 413 590 306 276 + 1;
  • 413 590 306 276 ÷ 2 = 206 795 153 138 + 0;
  • 206 795 153 138 ÷ 2 = 103 397 576 569 + 0;
  • 103 397 576 569 ÷ 2 = 51 698 788 284 + 1;
  • 51 698 788 284 ÷ 2 = 25 849 394 142 + 0;
  • 25 849 394 142 ÷ 2 = 12 924 697 071 + 0;
  • 12 924 697 071 ÷ 2 = 6 462 348 535 + 1;
  • 6 462 348 535 ÷ 2 = 3 231 174 267 + 1;
  • 3 231 174 267 ÷ 2 = 1 615 587 133 + 1;
  • 1 615 587 133 ÷ 2 = 807 793 566 + 1;
  • 807 793 566 ÷ 2 = 403 896 783 + 0;
  • 403 896 783 ÷ 2 = 201 948 391 + 1;
  • 201 948 391 ÷ 2 = 100 974 195 + 1;
  • 100 974 195 ÷ 2 = 50 487 097 + 1;
  • 50 487 097 ÷ 2 = 25 243 548 + 1;
  • 25 243 548 ÷ 2 = 12 621 774 + 0;
  • 12 621 774 ÷ 2 = 6 310 887 + 0;
  • 6 310 887 ÷ 2 = 3 155 443 + 1;
  • 3 155 443 ÷ 2 = 1 577 721 + 1;
  • 1 577 721 ÷ 2 = 788 860 + 1;
  • 788 860 ÷ 2 = 394 430 + 0;
  • 394 430 ÷ 2 = 197 215 + 0;
  • 197 215 ÷ 2 = 98 607 + 1;
  • 98 607 ÷ 2 = 49 303 + 1;
  • 49 303 ÷ 2 = 24 651 + 1;
  • 24 651 ÷ 2 = 12 325 + 1;
  • 12 325 ÷ 2 = 6 162 + 1;
  • 6 162 ÷ 2 = 3 081 + 0;
  • 3 081 ÷ 2 = 1 540 + 1;
  • 1 540 ÷ 2 = 770 + 0;
  • 770 ÷ 2 = 385 + 0;
  • 385 ÷ 2 = 192 + 1;
  • 192 ÷ 2 = 96 + 0;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


499 999 999 999 999 999 999 999 989 999 999 989(10) =


110 0000 0100 1011 1110 0111 0011 1101 1110 0100 1000 0011 1000 1010 1101 1001 1010 0101 1100 1111 1000 0101 1010 1011 1111 0100 0001 1011 1111 0101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 118 positions to the left, so that only one non zero digit remains to the left of it:


499 999 999 999 999 999 999 999 989 999 999 989(10) =


110 0000 0100 1011 1110 0111 0011 1101 1110 0100 1000 0011 1000 1010 1101 1001 1010 0101 1100 1111 1000 0101 1010 1011 1111 0100 0001 1011 1111 0101(2) =


110 0000 0100 1011 1110 0111 0011 1101 1110 0100 1000 0011 1000 1010 1101 1001 1010 0101 1100 1111 1000 0101 1010 1011 1111 0100 0001 1011 1111 0101(2) × 20 =


1.1000 0001 0010 1111 1001 1100 1111 0111 1001 0010 0000 1110 0010 1011 0110 0110 1001 0111 0011 1110 0001 0110 1010 1111 1101 0000 0110 1111 1101 01(2) × 2118


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 118


Mantissa (not normalized):
1.1000 0001 0010 1111 1001 1100 1111 0111 1001 0010 0000 1110 0010 1011 0110 0110 1001 0111 0011 1110 0001 0110 1010 1111 1101 0000 0110 1111 1101 01


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


118 + 2(8-1) - 1 =


(118 + 127)(10) =


245(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 245 ÷ 2 = 122 + 1;
  • 122 ÷ 2 = 61 + 0;
  • 61 ÷ 2 = 30 + 1;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


245(10) =


1111 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 0000 1001 0111 1100 1110 011 1101 1110 0100 1000 0011 1000 1010 1101 1001 1010 0101 1100 1111 1000 0101 1010 1011 1111 0100 0001 1011 1111 0101 =


100 0000 1001 0111 1100 1110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1111 0101


Mantissa (23 bits) =
100 0000 1001 0111 1100 1110


The base ten decimal number 499 999 999 999 999 999 999 999 989 999 999 989 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1111 0101 - 100 0000 1001 0111 1100 1110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 66 247 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 43 827 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 99 999.999 997 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 4 354.250 000 382 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number -592.4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 5 505 018 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 52.75 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 3 221 225 471 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 2.160 119 311 421 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
Number 99 330 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 05:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111