32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 101 011 099 999 999 999 999 999 931 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 101 011 099 999 999 999 999 999 931(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 101 011 099 999 999 999 999 999 931 ÷ 2 = 5 500 050 505 549 999 999 999 999 999 965 + 1;
  • 5 500 050 505 549 999 999 999 999 999 965 ÷ 2 = 2 750 025 252 774 999 999 999 999 999 982 + 1;
  • 2 750 025 252 774 999 999 999 999 999 982 ÷ 2 = 1 375 012 626 387 499 999 999 999 999 991 + 0;
  • 1 375 012 626 387 499 999 999 999 999 991 ÷ 2 = 687 506 313 193 749 999 999 999 999 995 + 1;
  • 687 506 313 193 749 999 999 999 999 995 ÷ 2 = 343 753 156 596 874 999 999 999 999 997 + 1;
  • 343 753 156 596 874 999 999 999 999 997 ÷ 2 = 171 876 578 298 437 499 999 999 999 998 + 1;
  • 171 876 578 298 437 499 999 999 999 998 ÷ 2 = 85 938 289 149 218 749 999 999 999 999 + 0;
  • 85 938 289 149 218 749 999 999 999 999 ÷ 2 = 42 969 144 574 609 374 999 999 999 999 + 1;
  • 42 969 144 574 609 374 999 999 999 999 ÷ 2 = 21 484 572 287 304 687 499 999 999 999 + 1;
  • 21 484 572 287 304 687 499 999 999 999 ÷ 2 = 10 742 286 143 652 343 749 999 999 999 + 1;
  • 10 742 286 143 652 343 749 999 999 999 ÷ 2 = 5 371 143 071 826 171 874 999 999 999 + 1;
  • 5 371 143 071 826 171 874 999 999 999 ÷ 2 = 2 685 571 535 913 085 937 499 999 999 + 1;
  • 2 685 571 535 913 085 937 499 999 999 ÷ 2 = 1 342 785 767 956 542 968 749 999 999 + 1;
  • 1 342 785 767 956 542 968 749 999 999 ÷ 2 = 671 392 883 978 271 484 374 999 999 + 1;
  • 671 392 883 978 271 484 374 999 999 ÷ 2 = 335 696 441 989 135 742 187 499 999 + 1;
  • 335 696 441 989 135 742 187 499 999 ÷ 2 = 167 848 220 994 567 871 093 749 999 + 1;
  • 167 848 220 994 567 871 093 749 999 ÷ 2 = 83 924 110 497 283 935 546 874 999 + 1;
  • 83 924 110 497 283 935 546 874 999 ÷ 2 = 41 962 055 248 641 967 773 437 499 + 1;
  • 41 962 055 248 641 967 773 437 499 ÷ 2 = 20 981 027 624 320 983 886 718 749 + 1;
  • 20 981 027 624 320 983 886 718 749 ÷ 2 = 10 490 513 812 160 491 943 359 374 + 1;
  • 10 490 513 812 160 491 943 359 374 ÷ 2 = 5 245 256 906 080 245 971 679 687 + 0;
  • 5 245 256 906 080 245 971 679 687 ÷ 2 = 2 622 628 453 040 122 985 839 843 + 1;
  • 2 622 628 453 040 122 985 839 843 ÷ 2 = 1 311 314 226 520 061 492 919 921 + 1;
  • 1 311 314 226 520 061 492 919 921 ÷ 2 = 655 657 113 260 030 746 459 960 + 1;
  • 655 657 113 260 030 746 459 960 ÷ 2 = 327 828 556 630 015 373 229 980 + 0;
  • 327 828 556 630 015 373 229 980 ÷ 2 = 163 914 278 315 007 686 614 990 + 0;
  • 163 914 278 315 007 686 614 990 ÷ 2 = 81 957 139 157 503 843 307 495 + 0;
  • 81 957 139 157 503 843 307 495 ÷ 2 = 40 978 569 578 751 921 653 747 + 1;
  • 40 978 569 578 751 921 653 747 ÷ 2 = 20 489 284 789 375 960 826 873 + 1;
  • 20 489 284 789 375 960 826 873 ÷ 2 = 10 244 642 394 687 980 413 436 + 1;
  • 10 244 642 394 687 980 413 436 ÷ 2 = 5 122 321 197 343 990 206 718 + 0;
  • 5 122 321 197 343 990 206 718 ÷ 2 = 2 561 160 598 671 995 103 359 + 0;
  • 2 561 160 598 671 995 103 359 ÷ 2 = 1 280 580 299 335 997 551 679 + 1;
  • 1 280 580 299 335 997 551 679 ÷ 2 = 640 290 149 667 998 775 839 + 1;
  • 640 290 149 667 998 775 839 ÷ 2 = 320 145 074 833 999 387 919 + 1;
  • 320 145 074 833 999 387 919 ÷ 2 = 160 072 537 416 999 693 959 + 1;
  • 160 072 537 416 999 693 959 ÷ 2 = 80 036 268 708 499 846 979 + 1;
  • 80 036 268 708 499 846 979 ÷ 2 = 40 018 134 354 249 923 489 + 1;
  • 40 018 134 354 249 923 489 ÷ 2 = 20 009 067 177 124 961 744 + 1;
  • 20 009 067 177 124 961 744 ÷ 2 = 10 004 533 588 562 480 872 + 0;
  • 10 004 533 588 562 480 872 ÷ 2 = 5 002 266 794 281 240 436 + 0;
  • 5 002 266 794 281 240 436 ÷ 2 = 2 501 133 397 140 620 218 + 0;
  • 2 501 133 397 140 620 218 ÷ 2 = 1 250 566 698 570 310 109 + 0;
  • 1 250 566 698 570 310 109 ÷ 2 = 625 283 349 285 155 054 + 1;
  • 625 283 349 285 155 054 ÷ 2 = 312 641 674 642 577 527 + 0;
  • 312 641 674 642 577 527 ÷ 2 = 156 320 837 321 288 763 + 1;
  • 156 320 837 321 288 763 ÷ 2 = 78 160 418 660 644 381 + 1;
  • 78 160 418 660 644 381 ÷ 2 = 39 080 209 330 322 190 + 1;
  • 39 080 209 330 322 190 ÷ 2 = 19 540 104 665 161 095 + 0;
  • 19 540 104 665 161 095 ÷ 2 = 9 770 052 332 580 547 + 1;
  • 9 770 052 332 580 547 ÷ 2 = 4 885 026 166 290 273 + 1;
  • 4 885 026 166 290 273 ÷ 2 = 2 442 513 083 145 136 + 1;
  • 2 442 513 083 145 136 ÷ 2 = 1 221 256 541 572 568 + 0;
  • 1 221 256 541 572 568 ÷ 2 = 610 628 270 786 284 + 0;
  • 610 628 270 786 284 ÷ 2 = 305 314 135 393 142 + 0;
  • 305 314 135 393 142 ÷ 2 = 152 657 067 696 571 + 0;
  • 152 657 067 696 571 ÷ 2 = 76 328 533 848 285 + 1;
  • 76 328 533 848 285 ÷ 2 = 38 164 266 924 142 + 1;
  • 38 164 266 924 142 ÷ 2 = 19 082 133 462 071 + 0;
  • 19 082 133 462 071 ÷ 2 = 9 541 066 731 035 + 1;
  • 9 541 066 731 035 ÷ 2 = 4 770 533 365 517 + 1;
  • 4 770 533 365 517 ÷ 2 = 2 385 266 682 758 + 1;
  • 2 385 266 682 758 ÷ 2 = 1 192 633 341 379 + 0;
  • 1 192 633 341 379 ÷ 2 = 596 316 670 689 + 1;
  • 596 316 670 689 ÷ 2 = 298 158 335 344 + 1;
  • 298 158 335 344 ÷ 2 = 149 079 167 672 + 0;
  • 149 079 167 672 ÷ 2 = 74 539 583 836 + 0;
  • 74 539 583 836 ÷ 2 = 37 269 791 918 + 0;
  • 37 269 791 918 ÷ 2 = 18 634 895 959 + 0;
  • 18 634 895 959 ÷ 2 = 9 317 447 979 + 1;
  • 9 317 447 979 ÷ 2 = 4 658 723 989 + 1;
  • 4 658 723 989 ÷ 2 = 2 329 361 994 + 1;
  • 2 329 361 994 ÷ 2 = 1 164 680 997 + 0;
  • 1 164 680 997 ÷ 2 = 582 340 498 + 1;
  • 582 340 498 ÷ 2 = 291 170 249 + 0;
  • 291 170 249 ÷ 2 = 145 585 124 + 1;
  • 145 585 124 ÷ 2 = 72 792 562 + 0;
  • 72 792 562 ÷ 2 = 36 396 281 + 0;
  • 36 396 281 ÷ 2 = 18 198 140 + 1;
  • 18 198 140 ÷ 2 = 9 099 070 + 0;
  • 9 099 070 ÷ 2 = 4 549 535 + 0;
  • 4 549 535 ÷ 2 = 2 274 767 + 1;
  • 2 274 767 ÷ 2 = 1 137 383 + 1;
  • 1 137 383 ÷ 2 = 568 691 + 1;
  • 568 691 ÷ 2 = 284 345 + 1;
  • 284 345 ÷ 2 = 142 172 + 1;
  • 142 172 ÷ 2 = 71 086 + 0;
  • 71 086 ÷ 2 = 35 543 + 0;
  • 35 543 ÷ 2 = 17 771 + 1;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 101 011 099 999 999 999 999 999 931(10) =


1000 1010 1101 0111 0011 1110 0100 1010 1110 0001 1011 1011 0000 1110 1110 1000 0111 1111 0011 1000 1110 1111 1111 1111 1011 1011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 101 011 099 999 999 999 999 999 931(10) =


1000 1010 1101 0111 0011 1110 0100 1010 1110 0001 1011 1011 0000 1110 1110 1000 0111 1111 0011 1000 1110 1111 1111 1111 1011 1011(2) =


1000 1010 1101 0111 0011 1110 0100 1010 1110 0001 1011 1011 0000 1110 1110 1000 0111 1111 0011 1000 1110 1111 1111 1111 1011 1011(2) × 20 =


1.0001 0101 1010 1110 0111 1100 1001 0101 1100 0011 0111 0110 0001 1101 1101 0000 1111 1110 0111 0001 1101 1111 1111 1111 0111 011(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1110 0111 1100 1001 0101 1100 0011 0111 0110 0001 1101 1101 0000 1111 1110 0111 0001 1101 1111 1111 1111 0111 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0111 0011 1110 0100 1010 1110 0001 1011 1011 0000 1110 1110 1000 0111 1111 0011 1000 1110 1111 1111 1111 1011 1011 =


000 1010 1101 0111 0011 1110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0111 0011 1110


The base ten decimal number 11 000 101 011 099 999 999 999 999 999 931 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0111 0011 1110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1.679 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 13.656 2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 419 430 162 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 7 110 534 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 1 001 101 001 110 000 000 000 000 000 051 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 262 272.078 14 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 32.566 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 9 167 626 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number -345.5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 31 051 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111