32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 001 101 001 110 000 000 000 000 000 051 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 001 101 001 110 000 000 000 000 000 051(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 001 101 001 110 000 000 000 000 000 051 ÷ 2 = 500 550 500 555 000 000 000 000 000 025 + 1;
  • 500 550 500 555 000 000 000 000 000 025 ÷ 2 = 250 275 250 277 500 000 000 000 000 012 + 1;
  • 250 275 250 277 500 000 000 000 000 012 ÷ 2 = 125 137 625 138 750 000 000 000 000 006 + 0;
  • 125 137 625 138 750 000 000 000 000 006 ÷ 2 = 62 568 812 569 375 000 000 000 000 003 + 0;
  • 62 568 812 569 375 000 000 000 000 003 ÷ 2 = 31 284 406 284 687 500 000 000 000 001 + 1;
  • 31 284 406 284 687 500 000 000 000 001 ÷ 2 = 15 642 203 142 343 750 000 000 000 000 + 1;
  • 15 642 203 142 343 750 000 000 000 000 ÷ 2 = 7 821 101 571 171 875 000 000 000 000 + 0;
  • 7 821 101 571 171 875 000 000 000 000 ÷ 2 = 3 910 550 785 585 937 500 000 000 000 + 0;
  • 3 910 550 785 585 937 500 000 000 000 ÷ 2 = 1 955 275 392 792 968 750 000 000 000 + 0;
  • 1 955 275 392 792 968 750 000 000 000 ÷ 2 = 977 637 696 396 484 375 000 000 000 + 0;
  • 977 637 696 396 484 375 000 000 000 ÷ 2 = 488 818 848 198 242 187 500 000 000 + 0;
  • 488 818 848 198 242 187 500 000 000 ÷ 2 = 244 409 424 099 121 093 750 000 000 + 0;
  • 244 409 424 099 121 093 750 000 000 ÷ 2 = 122 204 712 049 560 546 875 000 000 + 0;
  • 122 204 712 049 560 546 875 000 000 ÷ 2 = 61 102 356 024 780 273 437 500 000 + 0;
  • 61 102 356 024 780 273 437 500 000 ÷ 2 = 30 551 178 012 390 136 718 750 000 + 0;
  • 30 551 178 012 390 136 718 750 000 ÷ 2 = 15 275 589 006 195 068 359 375 000 + 0;
  • 15 275 589 006 195 068 359 375 000 ÷ 2 = 7 637 794 503 097 534 179 687 500 + 0;
  • 7 637 794 503 097 534 179 687 500 ÷ 2 = 3 818 897 251 548 767 089 843 750 + 0;
  • 3 818 897 251 548 767 089 843 750 ÷ 2 = 1 909 448 625 774 383 544 921 875 + 0;
  • 1 909 448 625 774 383 544 921 875 ÷ 2 = 954 724 312 887 191 772 460 937 + 1;
  • 954 724 312 887 191 772 460 937 ÷ 2 = 477 362 156 443 595 886 230 468 + 1;
  • 477 362 156 443 595 886 230 468 ÷ 2 = 238 681 078 221 797 943 115 234 + 0;
  • 238 681 078 221 797 943 115 234 ÷ 2 = 119 340 539 110 898 971 557 617 + 0;
  • 119 340 539 110 898 971 557 617 ÷ 2 = 59 670 269 555 449 485 778 808 + 1;
  • 59 670 269 555 449 485 778 808 ÷ 2 = 29 835 134 777 724 742 889 404 + 0;
  • 29 835 134 777 724 742 889 404 ÷ 2 = 14 917 567 388 862 371 444 702 + 0;
  • 14 917 567 388 862 371 444 702 ÷ 2 = 7 458 783 694 431 185 722 351 + 0;
  • 7 458 783 694 431 185 722 351 ÷ 2 = 3 729 391 847 215 592 861 175 + 1;
  • 3 729 391 847 215 592 861 175 ÷ 2 = 1 864 695 923 607 796 430 587 + 1;
  • 1 864 695 923 607 796 430 587 ÷ 2 = 932 347 961 803 898 215 293 + 1;
  • 932 347 961 803 898 215 293 ÷ 2 = 466 173 980 901 949 107 646 + 1;
  • 466 173 980 901 949 107 646 ÷ 2 = 233 086 990 450 974 553 823 + 0;
  • 233 086 990 450 974 553 823 ÷ 2 = 116 543 495 225 487 276 911 + 1;
  • 116 543 495 225 487 276 911 ÷ 2 = 58 271 747 612 743 638 455 + 1;
  • 58 271 747 612 743 638 455 ÷ 2 = 29 135 873 806 371 819 227 + 1;
  • 29 135 873 806 371 819 227 ÷ 2 = 14 567 936 903 185 909 613 + 1;
  • 14 567 936 903 185 909 613 ÷ 2 = 7 283 968 451 592 954 806 + 1;
  • 7 283 968 451 592 954 806 ÷ 2 = 3 641 984 225 796 477 403 + 0;
  • 3 641 984 225 796 477 403 ÷ 2 = 1 820 992 112 898 238 701 + 1;
  • 1 820 992 112 898 238 701 ÷ 2 = 910 496 056 449 119 350 + 1;
  • 910 496 056 449 119 350 ÷ 2 = 455 248 028 224 559 675 + 0;
  • 455 248 028 224 559 675 ÷ 2 = 227 624 014 112 279 837 + 1;
  • 227 624 014 112 279 837 ÷ 2 = 113 812 007 056 139 918 + 1;
  • 113 812 007 056 139 918 ÷ 2 = 56 906 003 528 069 959 + 0;
  • 56 906 003 528 069 959 ÷ 2 = 28 453 001 764 034 979 + 1;
  • 28 453 001 764 034 979 ÷ 2 = 14 226 500 882 017 489 + 1;
  • 14 226 500 882 017 489 ÷ 2 = 7 113 250 441 008 744 + 1;
  • 7 113 250 441 008 744 ÷ 2 = 3 556 625 220 504 372 + 0;
  • 3 556 625 220 504 372 ÷ 2 = 1 778 312 610 252 186 + 0;
  • 1 778 312 610 252 186 ÷ 2 = 889 156 305 126 093 + 0;
  • 889 156 305 126 093 ÷ 2 = 444 578 152 563 046 + 1;
  • 444 578 152 563 046 ÷ 2 = 222 289 076 281 523 + 0;
  • 222 289 076 281 523 ÷ 2 = 111 144 538 140 761 + 1;
  • 111 144 538 140 761 ÷ 2 = 55 572 269 070 380 + 1;
  • 55 572 269 070 380 ÷ 2 = 27 786 134 535 190 + 0;
  • 27 786 134 535 190 ÷ 2 = 13 893 067 267 595 + 0;
  • 13 893 067 267 595 ÷ 2 = 6 946 533 633 797 + 1;
  • 6 946 533 633 797 ÷ 2 = 3 473 266 816 898 + 1;
  • 3 473 266 816 898 ÷ 2 = 1 736 633 408 449 + 0;
  • 1 736 633 408 449 ÷ 2 = 868 316 704 224 + 1;
  • 868 316 704 224 ÷ 2 = 434 158 352 112 + 0;
  • 434 158 352 112 ÷ 2 = 217 079 176 056 + 0;
  • 217 079 176 056 ÷ 2 = 108 539 588 028 + 0;
  • 108 539 588 028 ÷ 2 = 54 269 794 014 + 0;
  • 54 269 794 014 ÷ 2 = 27 134 897 007 + 0;
  • 27 134 897 007 ÷ 2 = 13 567 448 503 + 1;
  • 13 567 448 503 ÷ 2 = 6 783 724 251 + 1;
  • 6 783 724 251 ÷ 2 = 3 391 862 125 + 1;
  • 3 391 862 125 ÷ 2 = 1 695 931 062 + 1;
  • 1 695 931 062 ÷ 2 = 847 965 531 + 0;
  • 847 965 531 ÷ 2 = 423 982 765 + 1;
  • 423 982 765 ÷ 2 = 211 991 382 + 1;
  • 211 991 382 ÷ 2 = 105 995 691 + 0;
  • 105 995 691 ÷ 2 = 52 997 845 + 1;
  • 52 997 845 ÷ 2 = 26 498 922 + 1;
  • 26 498 922 ÷ 2 = 13 249 461 + 0;
  • 13 249 461 ÷ 2 = 6 624 730 + 1;
  • 6 624 730 ÷ 2 = 3 312 365 + 0;
  • 3 312 365 ÷ 2 = 1 656 182 + 1;
  • 1 656 182 ÷ 2 = 828 091 + 0;
  • 828 091 ÷ 2 = 414 045 + 1;
  • 414 045 ÷ 2 = 207 022 + 1;
  • 207 022 ÷ 2 = 103 511 + 0;
  • 103 511 ÷ 2 = 51 755 + 1;
  • 51 755 ÷ 2 = 25 877 + 1;
  • 25 877 ÷ 2 = 12 938 + 1;
  • 12 938 ÷ 2 = 6 469 + 0;
  • 6 469 ÷ 2 = 3 234 + 1;
  • 3 234 ÷ 2 = 1 617 + 0;
  • 1 617 ÷ 2 = 808 + 1;
  • 808 ÷ 2 = 404 + 0;
  • 404 ÷ 2 = 202 + 0;
  • 202 ÷ 2 = 101 + 0;
  • 101 ÷ 2 = 50 + 1;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 001 101 001 110 000 000 000 000 000 051(10) =


1100 1010 0010 1011 1011 0101 0110 1101 1110 0000 1011 0011 0100 0111 0110 1101 1111 0111 1000 1001 1000 0000 0000 0011 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 001 101 001 110 000 000 000 000 000 051(10) =


1100 1010 0010 1011 1011 0101 0110 1101 1110 0000 1011 0011 0100 0111 0110 1101 1111 0111 1000 1001 1000 0000 0000 0011 0011(2) =


1100 1010 0010 1011 1011 0101 0110 1101 1110 0000 1011 0011 0100 0111 0110 1101 1111 0111 1000 1001 1000 0000 0000 0011 0011(2) × 20 =


1.1001 0100 0101 0111 0110 1010 1101 1011 1100 0001 0110 0110 1000 1110 1101 1011 1110 1111 0001 0011 0000 0000 0000 0110 011(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0100 0101 0111 0110 1010 1101 1011 1100 0001 0110 0110 1000 1110 1101 1011 1110 1111 0001 0011 0000 0000 0000 0110 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1010 0010 1011 1011 0101 0110 1101 1110 0000 1011 0011 0100 0111 0110 1101 1111 0111 1000 1001 1000 0000 0000 0011 0011 =


100 1010 0010 1011 1011 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1010 0010 1011 1011 0101


The base ten decimal number 1 001 101 001 110 000 000 000 000 000 051 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1010 0010 1011 1011 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 262 272.078 14 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 9 167 626 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 32.566 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 31 051 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number -4 030 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number -345.5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 421 070 015 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 521 981 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 0.788 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
Number 97 823 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 20:33 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111