32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 001 011 009 999 999 999 999 999 899 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 001 011 009 999 999 999 999 999 899(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 001 011 009 999 999 999 999 999 899 ÷ 2 = 5 500 000 505 504 999 999 999 999 999 949 + 1;
  • 5 500 000 505 504 999 999 999 999 999 949 ÷ 2 = 2 750 000 252 752 499 999 999 999 999 974 + 1;
  • 2 750 000 252 752 499 999 999 999 999 974 ÷ 2 = 1 375 000 126 376 249 999 999 999 999 987 + 0;
  • 1 375 000 126 376 249 999 999 999 999 987 ÷ 2 = 687 500 063 188 124 999 999 999 999 993 + 1;
  • 687 500 063 188 124 999 999 999 999 993 ÷ 2 = 343 750 031 594 062 499 999 999 999 996 + 1;
  • 343 750 031 594 062 499 999 999 999 996 ÷ 2 = 171 875 015 797 031 249 999 999 999 998 + 0;
  • 171 875 015 797 031 249 999 999 999 998 ÷ 2 = 85 937 507 898 515 624 999 999 999 999 + 0;
  • 85 937 507 898 515 624 999 999 999 999 ÷ 2 = 42 968 753 949 257 812 499 999 999 999 + 1;
  • 42 968 753 949 257 812 499 999 999 999 ÷ 2 = 21 484 376 974 628 906 249 999 999 999 + 1;
  • 21 484 376 974 628 906 249 999 999 999 ÷ 2 = 10 742 188 487 314 453 124 999 999 999 + 1;
  • 10 742 188 487 314 453 124 999 999 999 ÷ 2 = 5 371 094 243 657 226 562 499 999 999 + 1;
  • 5 371 094 243 657 226 562 499 999 999 ÷ 2 = 2 685 547 121 828 613 281 249 999 999 + 1;
  • 2 685 547 121 828 613 281 249 999 999 ÷ 2 = 1 342 773 560 914 306 640 624 999 999 + 1;
  • 1 342 773 560 914 306 640 624 999 999 ÷ 2 = 671 386 780 457 153 320 312 499 999 + 1;
  • 671 386 780 457 153 320 312 499 999 ÷ 2 = 335 693 390 228 576 660 156 249 999 + 1;
  • 335 693 390 228 576 660 156 249 999 ÷ 2 = 167 846 695 114 288 330 078 124 999 + 1;
  • 167 846 695 114 288 330 078 124 999 ÷ 2 = 83 923 347 557 144 165 039 062 499 + 1;
  • 83 923 347 557 144 165 039 062 499 ÷ 2 = 41 961 673 778 572 082 519 531 249 + 1;
  • 41 961 673 778 572 082 519 531 249 ÷ 2 = 20 980 836 889 286 041 259 765 624 + 1;
  • 20 980 836 889 286 041 259 765 624 ÷ 2 = 10 490 418 444 643 020 629 882 812 + 0;
  • 10 490 418 444 643 020 629 882 812 ÷ 2 = 5 245 209 222 321 510 314 941 406 + 0;
  • 5 245 209 222 321 510 314 941 406 ÷ 2 = 2 622 604 611 160 755 157 470 703 + 0;
  • 2 622 604 611 160 755 157 470 703 ÷ 2 = 1 311 302 305 580 377 578 735 351 + 1;
  • 1 311 302 305 580 377 578 735 351 ÷ 2 = 655 651 152 790 188 789 367 675 + 1;
  • 655 651 152 790 188 789 367 675 ÷ 2 = 327 825 576 395 094 394 683 837 + 1;
  • 327 825 576 395 094 394 683 837 ÷ 2 = 163 912 788 197 547 197 341 918 + 1;
  • 163 912 788 197 547 197 341 918 ÷ 2 = 81 956 394 098 773 598 670 959 + 0;
  • 81 956 394 098 773 598 670 959 ÷ 2 = 40 978 197 049 386 799 335 479 + 1;
  • 40 978 197 049 386 799 335 479 ÷ 2 = 20 489 098 524 693 399 667 739 + 1;
  • 20 489 098 524 693 399 667 739 ÷ 2 = 10 244 549 262 346 699 833 869 + 1;
  • 10 244 549 262 346 699 833 869 ÷ 2 = 5 122 274 631 173 349 916 934 + 1;
  • 5 122 274 631 173 349 916 934 ÷ 2 = 2 561 137 315 586 674 958 467 + 0;
  • 2 561 137 315 586 674 958 467 ÷ 2 = 1 280 568 657 793 337 479 233 + 1;
  • 1 280 568 657 793 337 479 233 ÷ 2 = 640 284 328 896 668 739 616 + 1;
  • 640 284 328 896 668 739 616 ÷ 2 = 320 142 164 448 334 369 808 + 0;
  • 320 142 164 448 334 369 808 ÷ 2 = 160 071 082 224 167 184 904 + 0;
  • 160 071 082 224 167 184 904 ÷ 2 = 80 035 541 112 083 592 452 + 0;
  • 80 035 541 112 083 592 452 ÷ 2 = 40 017 770 556 041 796 226 + 0;
  • 40 017 770 556 041 796 226 ÷ 2 = 20 008 885 278 020 898 113 + 0;
  • 20 008 885 278 020 898 113 ÷ 2 = 10 004 442 639 010 449 056 + 1;
  • 10 004 442 639 010 449 056 ÷ 2 = 5 002 221 319 505 224 528 + 0;
  • 5 002 221 319 505 224 528 ÷ 2 = 2 501 110 659 752 612 264 + 0;
  • 2 501 110 659 752 612 264 ÷ 2 = 1 250 555 329 876 306 132 + 0;
  • 1 250 555 329 876 306 132 ÷ 2 = 625 277 664 938 153 066 + 0;
  • 625 277 664 938 153 066 ÷ 2 = 312 638 832 469 076 533 + 0;
  • 312 638 832 469 076 533 ÷ 2 = 156 319 416 234 538 266 + 1;
  • 156 319 416 234 538 266 ÷ 2 = 78 159 708 117 269 133 + 0;
  • 78 159 708 117 269 133 ÷ 2 = 39 079 854 058 634 566 + 1;
  • 39 079 854 058 634 566 ÷ 2 = 19 539 927 029 317 283 + 0;
  • 19 539 927 029 317 283 ÷ 2 = 9 769 963 514 658 641 + 1;
  • 9 769 963 514 658 641 ÷ 2 = 4 884 981 757 329 320 + 1;
  • 4 884 981 757 329 320 ÷ 2 = 2 442 490 878 664 660 + 0;
  • 2 442 490 878 664 660 ÷ 2 = 1 221 245 439 332 330 + 0;
  • 1 221 245 439 332 330 ÷ 2 = 610 622 719 666 165 + 0;
  • 610 622 719 666 165 ÷ 2 = 305 311 359 833 082 + 1;
  • 305 311 359 833 082 ÷ 2 = 152 655 679 916 541 + 0;
  • 152 655 679 916 541 ÷ 2 = 76 327 839 958 270 + 1;
  • 76 327 839 958 270 ÷ 2 = 38 163 919 979 135 + 0;
  • 38 163 919 979 135 ÷ 2 = 19 081 959 989 567 + 1;
  • 19 081 959 989 567 ÷ 2 = 9 540 979 994 783 + 1;
  • 9 540 979 994 783 ÷ 2 = 4 770 489 997 391 + 1;
  • 4 770 489 997 391 ÷ 2 = 2 385 244 998 695 + 1;
  • 2 385 244 998 695 ÷ 2 = 1 192 622 499 347 + 1;
  • 1 192 622 499 347 ÷ 2 = 596 311 249 673 + 1;
  • 596 311 249 673 ÷ 2 = 298 155 624 836 + 1;
  • 298 155 624 836 ÷ 2 = 149 077 812 418 + 0;
  • 149 077 812 418 ÷ 2 = 74 538 906 209 + 0;
  • 74 538 906 209 ÷ 2 = 37 269 453 104 + 1;
  • 37 269 453 104 ÷ 2 = 18 634 726 552 + 0;
  • 18 634 726 552 ÷ 2 = 9 317 363 276 + 0;
  • 9 317 363 276 ÷ 2 = 4 658 681 638 + 0;
  • 4 658 681 638 ÷ 2 = 2 329 340 819 + 0;
  • 2 329 340 819 ÷ 2 = 1 164 670 409 + 1;
  • 1 164 670 409 ÷ 2 = 582 335 204 + 1;
  • 582 335 204 ÷ 2 = 291 167 602 + 0;
  • 291 167 602 ÷ 2 = 145 583 801 + 0;
  • 145 583 801 ÷ 2 = 72 791 900 + 1;
  • 72 791 900 ÷ 2 = 36 395 950 + 0;
  • 36 395 950 ÷ 2 = 18 197 975 + 0;
  • 18 197 975 ÷ 2 = 9 098 987 + 1;
  • 9 098 987 ÷ 2 = 4 549 493 + 1;
  • 4 549 493 ÷ 2 = 2 274 746 + 1;
  • 2 274 746 ÷ 2 = 1 137 373 + 0;
  • 1 137 373 ÷ 2 = 568 686 + 1;
  • 568 686 ÷ 2 = 284 343 + 0;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 001 011 009 999 999 999 999 999 899(10) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1001 1111 1101 0100 0110 1010 0000 1000 0011 0111 1011 1100 0111 1111 1111 1001 1011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 001 011 009 999 999 999 999 999 899(10) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1001 1111 1101 0100 0110 1010 0000 1000 0011 0111 1011 1100 0111 1111 1111 1001 1011(2) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1001 1111 1101 0100 0110 1010 0000 1000 0011 0111 1011 1100 0111 1111 1111 1001 1011(2) × 20 =


1.0001 0101 1010 1101 1101 0111 0010 0110 0001 0011 1111 1010 1000 1101 0100 0001 0000 0110 1111 0111 1000 1111 1111 1111 0011 011(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1101 0111 0010 0110 0001 0011 1111 1010 1000 1101 0100 0001 0000 0110 1111 0111 1000 1111 1111 1111 0011 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1110 1011 1001 0011 0000 1001 1111 1101 0100 0110 1010 0000 1000 0011 0111 1011 1100 0111 1111 1111 1001 1011 =


000 1010 1101 0110 1110 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1110 1011


The base ten decimal number 11 000 001 011 009 999 999 999 999 999 899 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1110 1011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 26.25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 8.057 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 000 001 110 011 100 000 000 000 000 045 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -0.000 000 032 428 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 001 101 010 099 999 999 999 999 902 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 234 370 511 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -1 294 994 909 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 986 357 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 860 457 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 0.010 78 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111