32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 001 110 011 100 000 000 000 000 045 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 001 110 011 100 000 000 000 000 045(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 001 110 011 100 000 000 000 000 045 ÷ 2 = 500 000 555 005 550 000 000 000 000 022 + 1;
  • 500 000 555 005 550 000 000 000 000 022 ÷ 2 = 250 000 277 502 775 000 000 000 000 011 + 0;
  • 250 000 277 502 775 000 000 000 000 011 ÷ 2 = 125 000 138 751 387 500 000 000 000 005 + 1;
  • 125 000 138 751 387 500 000 000 000 005 ÷ 2 = 62 500 069 375 693 750 000 000 000 002 + 1;
  • 62 500 069 375 693 750 000 000 000 002 ÷ 2 = 31 250 034 687 846 875 000 000 000 001 + 0;
  • 31 250 034 687 846 875 000 000 000 001 ÷ 2 = 15 625 017 343 923 437 500 000 000 000 + 1;
  • 15 625 017 343 923 437 500 000 000 000 ÷ 2 = 7 812 508 671 961 718 750 000 000 000 + 0;
  • 7 812 508 671 961 718 750 000 000 000 ÷ 2 = 3 906 254 335 980 859 375 000 000 000 + 0;
  • 3 906 254 335 980 859 375 000 000 000 ÷ 2 = 1 953 127 167 990 429 687 500 000 000 + 0;
  • 1 953 127 167 990 429 687 500 000 000 ÷ 2 = 976 563 583 995 214 843 750 000 000 + 0;
  • 976 563 583 995 214 843 750 000 000 ÷ 2 = 488 281 791 997 607 421 875 000 000 + 0;
  • 488 281 791 997 607 421 875 000 000 ÷ 2 = 244 140 895 998 803 710 937 500 000 + 0;
  • 244 140 895 998 803 710 937 500 000 ÷ 2 = 122 070 447 999 401 855 468 750 000 + 0;
  • 122 070 447 999 401 855 468 750 000 ÷ 2 = 61 035 223 999 700 927 734 375 000 + 0;
  • 61 035 223 999 700 927 734 375 000 ÷ 2 = 30 517 611 999 850 463 867 187 500 + 0;
  • 30 517 611 999 850 463 867 187 500 ÷ 2 = 15 258 805 999 925 231 933 593 750 + 0;
  • 15 258 805 999 925 231 933 593 750 ÷ 2 = 7 629 402 999 962 615 966 796 875 + 0;
  • 7 629 402 999 962 615 966 796 875 ÷ 2 = 3 814 701 499 981 307 983 398 437 + 1;
  • 3 814 701 499 981 307 983 398 437 ÷ 2 = 1 907 350 749 990 653 991 699 218 + 1;
  • 1 907 350 749 990 653 991 699 218 ÷ 2 = 953 675 374 995 326 995 849 609 + 0;
  • 953 675 374 995 326 995 849 609 ÷ 2 = 476 837 687 497 663 497 924 804 + 1;
  • 476 837 687 497 663 497 924 804 ÷ 2 = 238 418 843 748 831 748 962 402 + 0;
  • 238 418 843 748 831 748 962 402 ÷ 2 = 119 209 421 874 415 874 481 201 + 0;
  • 119 209 421 874 415 874 481 201 ÷ 2 = 59 604 710 937 207 937 240 600 + 1;
  • 59 604 710 937 207 937 240 600 ÷ 2 = 29 802 355 468 603 968 620 300 + 0;
  • 29 802 355 468 603 968 620 300 ÷ 2 = 14 901 177 734 301 984 310 150 + 0;
  • 14 901 177 734 301 984 310 150 ÷ 2 = 7 450 588 867 150 992 155 075 + 0;
  • 7 450 588 867 150 992 155 075 ÷ 2 = 3 725 294 433 575 496 077 537 + 1;
  • 3 725 294 433 575 496 077 537 ÷ 2 = 1 862 647 216 787 748 038 768 + 1;
  • 1 862 647 216 787 748 038 768 ÷ 2 = 931 323 608 393 874 019 384 + 0;
  • 931 323 608 393 874 019 384 ÷ 2 = 465 661 804 196 937 009 692 + 0;
  • 465 661 804 196 937 009 692 ÷ 2 = 232 830 902 098 468 504 846 + 0;
  • 232 830 902 098 468 504 846 ÷ 2 = 116 415 451 049 234 252 423 + 0;
  • 116 415 451 049 234 252 423 ÷ 2 = 58 207 725 524 617 126 211 + 1;
  • 58 207 725 524 617 126 211 ÷ 2 = 29 103 862 762 308 563 105 + 1;
  • 29 103 862 762 308 563 105 ÷ 2 = 14 551 931 381 154 281 552 + 1;
  • 14 551 931 381 154 281 552 ÷ 2 = 7 275 965 690 577 140 776 + 0;
  • 7 275 965 690 577 140 776 ÷ 2 = 3 637 982 845 288 570 388 + 0;
  • 3 637 982 845 288 570 388 ÷ 2 = 1 818 991 422 644 285 194 + 0;
  • 1 818 991 422 644 285 194 ÷ 2 = 909 495 711 322 142 597 + 0;
  • 909 495 711 322 142 597 ÷ 2 = 454 747 855 661 071 298 + 1;
  • 454 747 855 661 071 298 ÷ 2 = 227 373 927 830 535 649 + 0;
  • 227 373 927 830 535 649 ÷ 2 = 113 686 963 915 267 824 + 1;
  • 113 686 963 915 267 824 ÷ 2 = 56 843 481 957 633 912 + 0;
  • 56 843 481 957 633 912 ÷ 2 = 28 421 740 978 816 956 + 0;
  • 28 421 740 978 816 956 ÷ 2 = 14 210 870 489 408 478 + 0;
  • 14 210 870 489 408 478 ÷ 2 = 7 105 435 244 704 239 + 0;
  • 7 105 435 244 704 239 ÷ 2 = 3 552 717 622 352 119 + 1;
  • 3 552 717 622 352 119 ÷ 2 = 1 776 358 811 176 059 + 1;
  • 1 776 358 811 176 059 ÷ 2 = 888 179 405 588 029 + 1;
  • 888 179 405 588 029 ÷ 2 = 444 089 702 794 014 + 1;
  • 444 089 702 794 014 ÷ 2 = 222 044 851 397 007 + 0;
  • 222 044 851 397 007 ÷ 2 = 111 022 425 698 503 + 1;
  • 111 022 425 698 503 ÷ 2 = 55 511 212 849 251 + 1;
  • 55 511 212 849 251 ÷ 2 = 27 755 606 424 625 + 1;
  • 27 755 606 424 625 ÷ 2 = 13 877 803 212 312 + 1;
  • 13 877 803 212 312 ÷ 2 = 6 938 901 606 156 + 0;
  • 6 938 901 606 156 ÷ 2 = 3 469 450 803 078 + 0;
  • 3 469 450 803 078 ÷ 2 = 1 734 725 401 539 + 0;
  • 1 734 725 401 539 ÷ 2 = 867 362 700 769 + 1;
  • 867 362 700 769 ÷ 2 = 433 681 350 384 + 1;
  • 433 681 350 384 ÷ 2 = 216 840 675 192 + 0;
  • 216 840 675 192 ÷ 2 = 108 420 337 596 + 0;
  • 108 420 337 596 ÷ 2 = 54 210 168 798 + 0;
  • 54 210 168 798 ÷ 2 = 27 105 084 399 + 0;
  • 27 105 084 399 ÷ 2 = 13 552 542 199 + 1;
  • 13 552 542 199 ÷ 2 = 6 776 271 099 + 1;
  • 6 776 271 099 ÷ 2 = 3 388 135 549 + 1;
  • 3 388 135 549 ÷ 2 = 1 694 067 774 + 1;
  • 1 694 067 774 ÷ 2 = 847 033 887 + 0;
  • 847 033 887 ÷ 2 = 423 516 943 + 1;
  • 423 516 943 ÷ 2 = 211 758 471 + 1;
  • 211 758 471 ÷ 2 = 105 879 235 + 1;
  • 105 879 235 ÷ 2 = 52 939 617 + 1;
  • 52 939 617 ÷ 2 = 26 469 808 + 1;
  • 26 469 808 ÷ 2 = 13 234 904 + 0;
  • 13 234 904 ÷ 2 = 6 617 452 + 0;
  • 6 617 452 ÷ 2 = 3 308 726 + 0;
  • 3 308 726 ÷ 2 = 1 654 363 + 0;
  • 1 654 363 ÷ 2 = 827 181 + 1;
  • 827 181 ÷ 2 = 413 590 + 1;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 001 110 011 100 000 000 000 000 045(10) =


1100 1001 1111 0010 1101 1000 0111 1101 1110 0001 1000 1111 0111 1000 0101 0000 1110 0001 1000 1001 0110 0000 0000 0010 1101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 001 110 011 100 000 000 000 000 045(10) =


1100 1001 1111 0010 1101 1000 0111 1101 1110 0001 1000 1111 0111 1000 0101 0000 1110 0001 1000 1001 0110 0000 0000 0010 1101(2) =


1100 1001 1111 0010 1101 1000 0111 1101 1110 0001 1000 1111 0111 1000 0101 0000 1110 0001 1000 1001 0110 0000 0000 0010 1101(2) × 20 =


1.1001 0011 1110 0101 1011 0000 1111 1011 1100 0011 0001 1110 1111 0000 1010 0001 1100 0011 0001 0010 1100 0000 0000 0101 101(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1011 0000 1111 1011 1100 0011 0001 1110 1111 0000 1010 0001 1100 0011 0001 0010 1100 0000 0000 0101 101


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1101 1000 0111 1101 1110 0001 1000 1111 0111 1000 0101 0000 1110 0001 1000 1001 0110 0000 0000 0010 1101 =


100 1001 1111 0010 1101 1000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1101 1000


The base ten decimal number 1 000 001 110 011 100 000 000 000 000 045 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0010 1101 1000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 26.25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 001 101 010 099 999 999 999 999 902 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -0.000 000 032 428 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 8.057 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 234 370 511 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -1 294 994 909 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 860 457 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 986 357 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 90 484 305 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 0.010 78 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111