32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 011 001 100 110 009 999 999 999 999 916 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 011 001 100 110 009 999 999 999 999 916(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 011 001 100 110 009 999 999 999 999 916 ÷ 2 = 505 500 550 055 004 999 999 999 999 958 + 0;
  • 505 500 550 055 004 999 999 999 999 958 ÷ 2 = 252 750 275 027 502 499 999 999 999 979 + 0;
  • 252 750 275 027 502 499 999 999 999 979 ÷ 2 = 126 375 137 513 751 249 999 999 999 989 + 1;
  • 126 375 137 513 751 249 999 999 999 989 ÷ 2 = 63 187 568 756 875 624 999 999 999 994 + 1;
  • 63 187 568 756 875 624 999 999 999 994 ÷ 2 = 31 593 784 378 437 812 499 999 999 997 + 0;
  • 31 593 784 378 437 812 499 999 999 997 ÷ 2 = 15 796 892 189 218 906 249 999 999 998 + 1;
  • 15 796 892 189 218 906 249 999 999 998 ÷ 2 = 7 898 446 094 609 453 124 999 999 999 + 0;
  • 7 898 446 094 609 453 124 999 999 999 ÷ 2 = 3 949 223 047 304 726 562 499 999 999 + 1;
  • 3 949 223 047 304 726 562 499 999 999 ÷ 2 = 1 974 611 523 652 363 281 249 999 999 + 1;
  • 1 974 611 523 652 363 281 249 999 999 ÷ 2 = 987 305 761 826 181 640 624 999 999 + 1;
  • 987 305 761 826 181 640 624 999 999 ÷ 2 = 493 652 880 913 090 820 312 499 999 + 1;
  • 493 652 880 913 090 820 312 499 999 ÷ 2 = 246 826 440 456 545 410 156 249 999 + 1;
  • 246 826 440 456 545 410 156 249 999 ÷ 2 = 123 413 220 228 272 705 078 124 999 + 1;
  • 123 413 220 228 272 705 078 124 999 ÷ 2 = 61 706 610 114 136 352 539 062 499 + 1;
  • 61 706 610 114 136 352 539 062 499 ÷ 2 = 30 853 305 057 068 176 269 531 249 + 1;
  • 30 853 305 057 068 176 269 531 249 ÷ 2 = 15 426 652 528 534 088 134 765 624 + 1;
  • 15 426 652 528 534 088 134 765 624 ÷ 2 = 7 713 326 264 267 044 067 382 812 + 0;
  • 7 713 326 264 267 044 067 382 812 ÷ 2 = 3 856 663 132 133 522 033 691 406 + 0;
  • 3 856 663 132 133 522 033 691 406 ÷ 2 = 1 928 331 566 066 761 016 845 703 + 0;
  • 1 928 331 566 066 761 016 845 703 ÷ 2 = 964 165 783 033 380 508 422 851 + 1;
  • 964 165 783 033 380 508 422 851 ÷ 2 = 482 082 891 516 690 254 211 425 + 1;
  • 482 082 891 516 690 254 211 425 ÷ 2 = 241 041 445 758 345 127 105 712 + 1;
  • 241 041 445 758 345 127 105 712 ÷ 2 = 120 520 722 879 172 563 552 856 + 0;
  • 120 520 722 879 172 563 552 856 ÷ 2 = 60 260 361 439 586 281 776 428 + 0;
  • 60 260 361 439 586 281 776 428 ÷ 2 = 30 130 180 719 793 140 888 214 + 0;
  • 30 130 180 719 793 140 888 214 ÷ 2 = 15 065 090 359 896 570 444 107 + 0;
  • 15 065 090 359 896 570 444 107 ÷ 2 = 7 532 545 179 948 285 222 053 + 1;
  • 7 532 545 179 948 285 222 053 ÷ 2 = 3 766 272 589 974 142 611 026 + 1;
  • 3 766 272 589 974 142 611 026 ÷ 2 = 1 883 136 294 987 071 305 513 + 0;
  • 1 883 136 294 987 071 305 513 ÷ 2 = 941 568 147 493 535 652 756 + 1;
  • 941 568 147 493 535 652 756 ÷ 2 = 470 784 073 746 767 826 378 + 0;
  • 470 784 073 746 767 826 378 ÷ 2 = 235 392 036 873 383 913 189 + 0;
  • 235 392 036 873 383 913 189 ÷ 2 = 117 696 018 436 691 956 594 + 1;
  • 117 696 018 436 691 956 594 ÷ 2 = 58 848 009 218 345 978 297 + 0;
  • 58 848 009 218 345 978 297 ÷ 2 = 29 424 004 609 172 989 148 + 1;
  • 29 424 004 609 172 989 148 ÷ 2 = 14 712 002 304 586 494 574 + 0;
  • 14 712 002 304 586 494 574 ÷ 2 = 7 356 001 152 293 247 287 + 0;
  • 7 356 001 152 293 247 287 ÷ 2 = 3 678 000 576 146 623 643 + 1;
  • 3 678 000 576 146 623 643 ÷ 2 = 1 839 000 288 073 311 821 + 1;
  • 1 839 000 288 073 311 821 ÷ 2 = 919 500 144 036 655 910 + 1;
  • 919 500 144 036 655 910 ÷ 2 = 459 750 072 018 327 955 + 0;
  • 459 750 072 018 327 955 ÷ 2 = 229 875 036 009 163 977 + 1;
  • 229 875 036 009 163 977 ÷ 2 = 114 937 518 004 581 988 + 1;
  • 114 937 518 004 581 988 ÷ 2 = 57 468 759 002 290 994 + 0;
  • 57 468 759 002 290 994 ÷ 2 = 28 734 379 501 145 497 + 0;
  • 28 734 379 501 145 497 ÷ 2 = 14 367 189 750 572 748 + 1;
  • 14 367 189 750 572 748 ÷ 2 = 7 183 594 875 286 374 + 0;
  • 7 183 594 875 286 374 ÷ 2 = 3 591 797 437 643 187 + 0;
  • 3 591 797 437 643 187 ÷ 2 = 1 795 898 718 821 593 + 1;
  • 1 795 898 718 821 593 ÷ 2 = 897 949 359 410 796 + 1;
  • 897 949 359 410 796 ÷ 2 = 448 974 679 705 398 + 0;
  • 448 974 679 705 398 ÷ 2 = 224 487 339 852 699 + 0;
  • 224 487 339 852 699 ÷ 2 = 112 243 669 926 349 + 1;
  • 112 243 669 926 349 ÷ 2 = 56 121 834 963 174 + 1;
  • 56 121 834 963 174 ÷ 2 = 28 060 917 481 587 + 0;
  • 28 060 917 481 587 ÷ 2 = 14 030 458 740 793 + 1;
  • 14 030 458 740 793 ÷ 2 = 7 015 229 370 396 + 1;
  • 7 015 229 370 396 ÷ 2 = 3 507 614 685 198 + 0;
  • 3 507 614 685 198 ÷ 2 = 1 753 807 342 599 + 0;
  • 1 753 807 342 599 ÷ 2 = 876 903 671 299 + 1;
  • 876 903 671 299 ÷ 2 = 438 451 835 649 + 1;
  • 438 451 835 649 ÷ 2 = 219 225 917 824 + 1;
  • 219 225 917 824 ÷ 2 = 109 612 958 912 + 0;
  • 109 612 958 912 ÷ 2 = 54 806 479 456 + 0;
  • 54 806 479 456 ÷ 2 = 27 403 239 728 + 0;
  • 27 403 239 728 ÷ 2 = 13 701 619 864 + 0;
  • 13 701 619 864 ÷ 2 = 6 850 809 932 + 0;
  • 6 850 809 932 ÷ 2 = 3 425 404 966 + 0;
  • 3 425 404 966 ÷ 2 = 1 712 702 483 + 0;
  • 1 712 702 483 ÷ 2 = 856 351 241 + 1;
  • 856 351 241 ÷ 2 = 428 175 620 + 1;
  • 428 175 620 ÷ 2 = 214 087 810 + 0;
  • 214 087 810 ÷ 2 = 107 043 905 + 0;
  • 107 043 905 ÷ 2 = 53 521 952 + 1;
  • 53 521 952 ÷ 2 = 26 760 976 + 0;
  • 26 760 976 ÷ 2 = 13 380 488 + 0;
  • 13 380 488 ÷ 2 = 6 690 244 + 0;
  • 6 690 244 ÷ 2 = 3 345 122 + 0;
  • 3 345 122 ÷ 2 = 1 672 561 + 0;
  • 1 672 561 ÷ 2 = 836 280 + 1;
  • 836 280 ÷ 2 = 418 140 + 0;
  • 418 140 ÷ 2 = 209 070 + 0;
  • 209 070 ÷ 2 = 104 535 + 0;
  • 104 535 ÷ 2 = 52 267 + 1;
  • 52 267 ÷ 2 = 26 133 + 1;
  • 26 133 ÷ 2 = 13 066 + 1;
  • 13 066 ÷ 2 = 6 533 + 0;
  • 6 533 ÷ 2 = 3 266 + 1;
  • 3 266 ÷ 2 = 1 633 + 0;
  • 1 633 ÷ 2 = 816 + 1;
  • 816 ÷ 2 = 408 + 0;
  • 408 ÷ 2 = 204 + 0;
  • 204 ÷ 2 = 102 + 0;
  • 102 ÷ 2 = 51 + 0;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 011 001 100 110 009 999 999 999 999 916(10) =


1100 1100 0010 1011 1000 1000 0010 0110 0000 0011 1001 1011 0011 0010 0110 1110 0101 0010 1100 0011 1000 1111 1111 1010 1100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 011 001 100 110 009 999 999 999 999 916(10) =


1100 1100 0010 1011 1000 1000 0010 0110 0000 0011 1001 1011 0011 0010 0110 1110 0101 0010 1100 0011 1000 1111 1111 1010 1100(2) =


1100 1100 0010 1011 1000 1000 0010 0110 0000 0011 1001 1011 0011 0010 0110 1110 0101 0010 1100 0011 1000 1111 1111 1010 1100(2) × 20 =


1.1001 1000 0101 0111 0001 0000 0100 1100 0000 0111 0011 0110 0110 0100 1101 1100 1010 0101 1000 0111 0001 1111 1111 0101 100(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 1000 0101 0111 0001 0000 0100 1100 0000 0111 0011 0110 0110 0100 1101 1100 1010 0101 1000 0111 0001 1111 1111 0101 100


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1100 0010 1011 1000 1000 0010 0110 0000 0011 1001 1011 0011 0010 0110 1110 0101 0010 1100 0011 1000 1111 1111 1010 1100 =


100 1100 0010 1011 1000 1000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1100 0010 1011 1000 1000


The base ten decimal number 1 011 001 100 110 009 999 999 999 999 916 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1100 0010 1011 1000 1000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 646.28 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number -100 098 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 34 028 237 000 000 000 000 000 000 000 000 000 000 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1 200 105 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number -312.625 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1 000 100 000 111 001 011 000 101 110 144 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 937 108 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 59.671 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number -210.608 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 256 209 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111