32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 34 028 237 000 000 000 000 000 000 000 000 000 000 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 34 028 237 000 000 000 000 000 000 000 000 000 000(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 34 028 237 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 17 014 118 500 000 000 000 000 000 000 000 000 000 + 0;
  • 17 014 118 500 000 000 000 000 000 000 000 000 000 ÷ 2 = 8 507 059 250 000 000 000 000 000 000 000 000 000 + 0;
  • 8 507 059 250 000 000 000 000 000 000 000 000 000 ÷ 2 = 4 253 529 625 000 000 000 000 000 000 000 000 000 + 0;
  • 4 253 529 625 000 000 000 000 000 000 000 000 000 ÷ 2 = 2 126 764 812 500 000 000 000 000 000 000 000 000 + 0;
  • 2 126 764 812 500 000 000 000 000 000 000 000 000 ÷ 2 = 1 063 382 406 250 000 000 000 000 000 000 000 000 + 0;
  • 1 063 382 406 250 000 000 000 000 000 000 000 000 ÷ 2 = 531 691 203 125 000 000 000 000 000 000 000 000 + 0;
  • 531 691 203 125 000 000 000 000 000 000 000 000 ÷ 2 = 265 845 601 562 500 000 000 000 000 000 000 000 + 0;
  • 265 845 601 562 500 000 000 000 000 000 000 000 ÷ 2 = 132 922 800 781 250 000 000 000 000 000 000 000 + 0;
  • 132 922 800 781 250 000 000 000 000 000 000 000 ÷ 2 = 66 461 400 390 625 000 000 000 000 000 000 000 + 0;
  • 66 461 400 390 625 000 000 000 000 000 000 000 ÷ 2 = 33 230 700 195 312 500 000 000 000 000 000 000 + 0;
  • 33 230 700 195 312 500 000 000 000 000 000 000 ÷ 2 = 16 615 350 097 656 250 000 000 000 000 000 000 + 0;
  • 16 615 350 097 656 250 000 000 000 000 000 000 ÷ 2 = 8 307 675 048 828 125 000 000 000 000 000 000 + 0;
  • 8 307 675 048 828 125 000 000 000 000 000 000 ÷ 2 = 4 153 837 524 414 062 500 000 000 000 000 000 + 0;
  • 4 153 837 524 414 062 500 000 000 000 000 000 ÷ 2 = 2 076 918 762 207 031 250 000 000 000 000 000 + 0;
  • 2 076 918 762 207 031 250 000 000 000 000 000 ÷ 2 = 1 038 459 381 103 515 625 000 000 000 000 000 + 0;
  • 1 038 459 381 103 515 625 000 000 000 000 000 ÷ 2 = 519 229 690 551 757 812 500 000 000 000 000 + 0;
  • 519 229 690 551 757 812 500 000 000 000 000 ÷ 2 = 259 614 845 275 878 906 250 000 000 000 000 + 0;
  • 259 614 845 275 878 906 250 000 000 000 000 ÷ 2 = 129 807 422 637 939 453 125 000 000 000 000 + 0;
  • 129 807 422 637 939 453 125 000 000 000 000 ÷ 2 = 64 903 711 318 969 726 562 500 000 000 000 + 0;
  • 64 903 711 318 969 726 562 500 000 000 000 ÷ 2 = 32 451 855 659 484 863 281 250 000 000 000 + 0;
  • 32 451 855 659 484 863 281 250 000 000 000 ÷ 2 = 16 225 927 829 742 431 640 625 000 000 000 + 0;
  • 16 225 927 829 742 431 640 625 000 000 000 ÷ 2 = 8 112 963 914 871 215 820 312 500 000 000 + 0;
  • 8 112 963 914 871 215 820 312 500 000 000 ÷ 2 = 4 056 481 957 435 607 910 156 250 000 000 + 0;
  • 4 056 481 957 435 607 910 156 250 000 000 ÷ 2 = 2 028 240 978 717 803 955 078 125 000 000 + 0;
  • 2 028 240 978 717 803 955 078 125 000 000 ÷ 2 = 1 014 120 489 358 901 977 539 062 500 000 + 0;
  • 1 014 120 489 358 901 977 539 062 500 000 ÷ 2 = 507 060 244 679 450 988 769 531 250 000 + 0;
  • 507 060 244 679 450 988 769 531 250 000 ÷ 2 = 253 530 122 339 725 494 384 765 625 000 + 0;
  • 253 530 122 339 725 494 384 765 625 000 ÷ 2 = 126 765 061 169 862 747 192 382 812 500 + 0;
  • 126 765 061 169 862 747 192 382 812 500 ÷ 2 = 63 382 530 584 931 373 596 191 406 250 + 0;
  • 63 382 530 584 931 373 596 191 406 250 ÷ 2 = 31 691 265 292 465 686 798 095 703 125 + 0;
  • 31 691 265 292 465 686 798 095 703 125 ÷ 2 = 15 845 632 646 232 843 399 047 851 562 + 1;
  • 15 845 632 646 232 843 399 047 851 562 ÷ 2 = 7 922 816 323 116 421 699 523 925 781 + 0;
  • 7 922 816 323 116 421 699 523 925 781 ÷ 2 = 3 961 408 161 558 210 849 761 962 890 + 1;
  • 3 961 408 161 558 210 849 761 962 890 ÷ 2 = 1 980 704 080 779 105 424 880 981 445 + 0;
  • 1 980 704 080 779 105 424 880 981 445 ÷ 2 = 990 352 040 389 552 712 440 490 722 + 1;
  • 990 352 040 389 552 712 440 490 722 ÷ 2 = 495 176 020 194 776 356 220 245 361 + 0;
  • 495 176 020 194 776 356 220 245 361 ÷ 2 = 247 588 010 097 388 178 110 122 680 + 1;
  • 247 588 010 097 388 178 110 122 680 ÷ 2 = 123 794 005 048 694 089 055 061 340 + 0;
  • 123 794 005 048 694 089 055 061 340 ÷ 2 = 61 897 002 524 347 044 527 530 670 + 0;
  • 61 897 002 524 347 044 527 530 670 ÷ 2 = 30 948 501 262 173 522 263 765 335 + 0;
  • 30 948 501 262 173 522 263 765 335 ÷ 2 = 15 474 250 631 086 761 131 882 667 + 1;
  • 15 474 250 631 086 761 131 882 667 ÷ 2 = 7 737 125 315 543 380 565 941 333 + 1;
  • 7 737 125 315 543 380 565 941 333 ÷ 2 = 3 868 562 657 771 690 282 970 666 + 1;
  • 3 868 562 657 771 690 282 970 666 ÷ 2 = 1 934 281 328 885 845 141 485 333 + 0;
  • 1 934 281 328 885 845 141 485 333 ÷ 2 = 967 140 664 442 922 570 742 666 + 1;
  • 967 140 664 442 922 570 742 666 ÷ 2 = 483 570 332 221 461 285 371 333 + 0;
  • 483 570 332 221 461 285 371 333 ÷ 2 = 241 785 166 110 730 642 685 666 + 1;
  • 241 785 166 110 730 642 685 666 ÷ 2 = 120 892 583 055 365 321 342 833 + 0;
  • 120 892 583 055 365 321 342 833 ÷ 2 = 60 446 291 527 682 660 671 416 + 1;
  • 60 446 291 527 682 660 671 416 ÷ 2 = 30 223 145 763 841 330 335 708 + 0;
  • 30 223 145 763 841 330 335 708 ÷ 2 = 15 111 572 881 920 665 167 854 + 0;
  • 15 111 572 881 920 665 167 854 ÷ 2 = 7 555 786 440 960 332 583 927 + 0;
  • 7 555 786 440 960 332 583 927 ÷ 2 = 3 777 893 220 480 166 291 963 + 1;
  • 3 777 893 220 480 166 291 963 ÷ 2 = 1 888 946 610 240 083 145 981 + 1;
  • 1 888 946 610 240 083 145 981 ÷ 2 = 944 473 305 120 041 572 990 + 1;
  • 944 473 305 120 041 572 990 ÷ 2 = 472 236 652 560 020 786 495 + 0;
  • 472 236 652 560 020 786 495 ÷ 2 = 236 118 326 280 010 393 247 + 1;
  • 236 118 326 280 010 393 247 ÷ 2 = 118 059 163 140 005 196 623 + 1;
  • 118 059 163 140 005 196 623 ÷ 2 = 59 029 581 570 002 598 311 + 1;
  • 59 029 581 570 002 598 311 ÷ 2 = 29 514 790 785 001 299 155 + 1;
  • 29 514 790 785 001 299 155 ÷ 2 = 14 757 395 392 500 649 577 + 1;
  • 14 757 395 392 500 649 577 ÷ 2 = 7 378 697 696 250 324 788 + 1;
  • 7 378 697 696 250 324 788 ÷ 2 = 3 689 348 848 125 162 394 + 0;
  • 3 689 348 848 125 162 394 ÷ 2 = 1 844 674 424 062 581 197 + 0;
  • 1 844 674 424 062 581 197 ÷ 2 = 922 337 212 031 290 598 + 1;
  • 922 337 212 031 290 598 ÷ 2 = 461 168 606 015 645 299 + 0;
  • 461 168 606 015 645 299 ÷ 2 = 230 584 303 007 822 649 + 1;
  • 230 584 303 007 822 649 ÷ 2 = 115 292 151 503 911 324 + 1;
  • 115 292 151 503 911 324 ÷ 2 = 57 646 075 751 955 662 + 0;
  • 57 646 075 751 955 662 ÷ 2 = 28 823 037 875 977 831 + 0;
  • 28 823 037 875 977 831 ÷ 2 = 14 411 518 937 988 915 + 1;
  • 14 411 518 937 988 915 ÷ 2 = 7 205 759 468 994 457 + 1;
  • 7 205 759 468 994 457 ÷ 2 = 3 602 879 734 497 228 + 1;
  • 3 602 879 734 497 228 ÷ 2 = 1 801 439 867 248 614 + 0;
  • 1 801 439 867 248 614 ÷ 2 = 900 719 933 624 307 + 0;
  • 900 719 933 624 307 ÷ 2 = 450 359 966 812 153 + 1;
  • 450 359 966 812 153 ÷ 2 = 225 179 983 406 076 + 1;
  • 225 179 983 406 076 ÷ 2 = 112 589 991 703 038 + 0;
  • 112 589 991 703 038 ÷ 2 = 56 294 995 851 519 + 0;
  • 56 294 995 851 519 ÷ 2 = 28 147 497 925 759 + 1;
  • 28 147 497 925 759 ÷ 2 = 14 073 748 962 879 + 1;
  • 14 073 748 962 879 ÷ 2 = 7 036 874 481 439 + 1;
  • 7 036 874 481 439 ÷ 2 = 3 518 437 240 719 + 1;
  • 3 518 437 240 719 ÷ 2 = 1 759 218 620 359 + 1;
  • 1 759 218 620 359 ÷ 2 = 879 609 310 179 + 1;
  • 879 609 310 179 ÷ 2 = 439 804 655 089 + 1;
  • 439 804 655 089 ÷ 2 = 219 902 327 544 + 1;
  • 219 902 327 544 ÷ 2 = 109 951 163 772 + 0;
  • 109 951 163 772 ÷ 2 = 54 975 581 886 + 0;
  • 54 975 581 886 ÷ 2 = 27 487 790 943 + 0;
  • 27 487 790 943 ÷ 2 = 13 743 895 471 + 1;
  • 13 743 895 471 ÷ 2 = 6 871 947 735 + 1;
  • 6 871 947 735 ÷ 2 = 3 435 973 867 + 1;
  • 3 435 973 867 ÷ 2 = 1 717 986 933 + 1;
  • 1 717 986 933 ÷ 2 = 858 993 466 + 1;
  • 858 993 466 ÷ 2 = 429 496 733 + 0;
  • 429 496 733 ÷ 2 = 214 748 366 + 1;
  • 214 748 366 ÷ 2 = 107 374 183 + 0;
  • 107 374 183 ÷ 2 = 53 687 091 + 1;
  • 53 687 091 ÷ 2 = 26 843 545 + 1;
  • 26 843 545 ÷ 2 = 13 421 772 + 1;
  • 13 421 772 ÷ 2 = 6 710 886 + 0;
  • 6 710 886 ÷ 2 = 3 355 443 + 0;
  • 3 355 443 ÷ 2 = 1 677 721 + 1;
  • 1 677 721 ÷ 2 = 838 860 + 1;
  • 838 860 ÷ 2 = 419 430 + 0;
  • 419 430 ÷ 2 = 209 715 + 0;
  • 209 715 ÷ 2 = 104 857 + 1;
  • 104 857 ÷ 2 = 52 428 + 1;
  • 52 428 ÷ 2 = 26 214 + 0;
  • 26 214 ÷ 2 = 13 107 + 0;
  • 13 107 ÷ 2 = 6 553 + 1;
  • 6 553 ÷ 2 = 3 276 + 1;
  • 3 276 ÷ 2 = 1 638 + 0;
  • 1 638 ÷ 2 = 819 + 0;
  • 819 ÷ 2 = 409 + 1;
  • 409 ÷ 2 = 204 + 1;
  • 204 ÷ 2 = 102 + 0;
  • 102 ÷ 2 = 51 + 0;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


34 028 237 000 000 000 000 000 000 000 000 000 000(10) =


1 1001 1001 1001 1001 1001 1001 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 124 positions to the left, so that only one non zero digit remains to the left of it:


34 028 237 000 000 000 000 000 000 000 000 000 000(10) =


1 1001 1001 1001 1001 1001 1001 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000(2) =


1 1001 1001 1001 1001 1001 1001 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000(2) × 20 =


1.1001 1001 1001 1001 1001 1001 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000(2) × 2124


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 124


Mantissa (not normalized):
1.1001 1001 1001 1001 1001 1001 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


124 + 2(8-1) - 1 =


(124 + 127)(10) =


251(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 251 ÷ 2 = 125 + 1;
  • 125 ÷ 2 = 62 + 1;
  • 62 ÷ 2 = 31 + 0;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


251(10) =


1111 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1100 1100 1100 1100 1100 1 1101 0111 1100 0111 1111 1001 1001 1100 1101 0011 1111 0111 0001 0101 0111 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 =


100 1100 1100 1100 1100 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1111 1011


Mantissa (23 bits) =
100 1100 1100 1100 1100 1100


The base ten decimal number 34 028 237 000 000 000 000 000 000 000 000 000 000 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1111 1011 - 100 1100 1100 1100 1100 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 200 105 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number -312.625 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1 000 100 000 111 001 011 000 101 110 144 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 937 108 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 59.671 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number -210.608 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 256 209 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1 933 204 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 0.000 024 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 18 256.23 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111