32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 100 000 111 001 011 000 101 110 143 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 100 000 111 001 011 000 101 110 143(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 100 000 111 001 011 000 101 110 143 ÷ 2 = 500 050 000 055 500 505 500 050 555 071 + 1;
  • 500 050 000 055 500 505 500 050 555 071 ÷ 2 = 250 025 000 027 750 252 750 025 277 535 + 1;
  • 250 025 000 027 750 252 750 025 277 535 ÷ 2 = 125 012 500 013 875 126 375 012 638 767 + 1;
  • 125 012 500 013 875 126 375 012 638 767 ÷ 2 = 62 506 250 006 937 563 187 506 319 383 + 1;
  • 62 506 250 006 937 563 187 506 319 383 ÷ 2 = 31 253 125 003 468 781 593 753 159 691 + 1;
  • 31 253 125 003 468 781 593 753 159 691 ÷ 2 = 15 626 562 501 734 390 796 876 579 845 + 1;
  • 15 626 562 501 734 390 796 876 579 845 ÷ 2 = 7 813 281 250 867 195 398 438 289 922 + 1;
  • 7 813 281 250 867 195 398 438 289 922 ÷ 2 = 3 906 640 625 433 597 699 219 144 961 + 0;
  • 3 906 640 625 433 597 699 219 144 961 ÷ 2 = 1 953 320 312 716 798 849 609 572 480 + 1;
  • 1 953 320 312 716 798 849 609 572 480 ÷ 2 = 976 660 156 358 399 424 804 786 240 + 0;
  • 976 660 156 358 399 424 804 786 240 ÷ 2 = 488 330 078 179 199 712 402 393 120 + 0;
  • 488 330 078 179 199 712 402 393 120 ÷ 2 = 244 165 039 089 599 856 201 196 560 + 0;
  • 244 165 039 089 599 856 201 196 560 ÷ 2 = 122 082 519 544 799 928 100 598 280 + 0;
  • 122 082 519 544 799 928 100 598 280 ÷ 2 = 61 041 259 772 399 964 050 299 140 + 0;
  • 61 041 259 772 399 964 050 299 140 ÷ 2 = 30 520 629 886 199 982 025 149 570 + 0;
  • 30 520 629 886 199 982 025 149 570 ÷ 2 = 15 260 314 943 099 991 012 574 785 + 0;
  • 15 260 314 943 099 991 012 574 785 ÷ 2 = 7 630 157 471 549 995 506 287 392 + 1;
  • 7 630 157 471 549 995 506 287 392 ÷ 2 = 3 815 078 735 774 997 753 143 696 + 0;
  • 3 815 078 735 774 997 753 143 696 ÷ 2 = 1 907 539 367 887 498 876 571 848 + 0;
  • 1 907 539 367 887 498 876 571 848 ÷ 2 = 953 769 683 943 749 438 285 924 + 0;
  • 953 769 683 943 749 438 285 924 ÷ 2 = 476 884 841 971 874 719 142 962 + 0;
  • 476 884 841 971 874 719 142 962 ÷ 2 = 238 442 420 985 937 359 571 481 + 0;
  • 238 442 420 985 937 359 571 481 ÷ 2 = 119 221 210 492 968 679 785 740 + 1;
  • 119 221 210 492 968 679 785 740 ÷ 2 = 59 610 605 246 484 339 892 870 + 0;
  • 59 610 605 246 484 339 892 870 ÷ 2 = 29 805 302 623 242 169 946 435 + 0;
  • 29 805 302 623 242 169 946 435 ÷ 2 = 14 902 651 311 621 084 973 217 + 1;
  • 14 902 651 311 621 084 973 217 ÷ 2 = 7 451 325 655 810 542 486 608 + 1;
  • 7 451 325 655 810 542 486 608 ÷ 2 = 3 725 662 827 905 271 243 304 + 0;
  • 3 725 662 827 905 271 243 304 ÷ 2 = 1 862 831 413 952 635 621 652 + 0;
  • 1 862 831 413 952 635 621 652 ÷ 2 = 931 415 706 976 317 810 826 + 0;
  • 931 415 706 976 317 810 826 ÷ 2 = 465 707 853 488 158 905 413 + 0;
  • 465 707 853 488 158 905 413 ÷ 2 = 232 853 926 744 079 452 706 + 1;
  • 232 853 926 744 079 452 706 ÷ 2 = 116 426 963 372 039 726 353 + 0;
  • 116 426 963 372 039 726 353 ÷ 2 = 58 213 481 686 019 863 176 + 1;
  • 58 213 481 686 019 863 176 ÷ 2 = 29 106 740 843 009 931 588 + 0;
  • 29 106 740 843 009 931 588 ÷ 2 = 14 553 370 421 504 965 794 + 0;
  • 14 553 370 421 504 965 794 ÷ 2 = 7 276 685 210 752 482 897 + 0;
  • 7 276 685 210 752 482 897 ÷ 2 = 3 638 342 605 376 241 448 + 1;
  • 3 638 342 605 376 241 448 ÷ 2 = 1 819 171 302 688 120 724 + 0;
  • 1 819 171 302 688 120 724 ÷ 2 = 909 585 651 344 060 362 + 0;
  • 909 585 651 344 060 362 ÷ 2 = 454 792 825 672 030 181 + 0;
  • 454 792 825 672 030 181 ÷ 2 = 227 396 412 836 015 090 + 1;
  • 227 396 412 836 015 090 ÷ 2 = 113 698 206 418 007 545 + 0;
  • 113 698 206 418 007 545 ÷ 2 = 56 849 103 209 003 772 + 1;
  • 56 849 103 209 003 772 ÷ 2 = 28 424 551 604 501 886 + 0;
  • 28 424 551 604 501 886 ÷ 2 = 14 212 275 802 250 943 + 0;
  • 14 212 275 802 250 943 ÷ 2 = 7 106 137 901 125 471 + 1;
  • 7 106 137 901 125 471 ÷ 2 = 3 553 068 950 562 735 + 1;
  • 3 553 068 950 562 735 ÷ 2 = 1 776 534 475 281 367 + 1;
  • 1 776 534 475 281 367 ÷ 2 = 888 267 237 640 683 + 1;
  • 888 267 237 640 683 ÷ 2 = 444 133 618 820 341 + 1;
  • 444 133 618 820 341 ÷ 2 = 222 066 809 410 170 + 1;
  • 222 066 809 410 170 ÷ 2 = 111 033 404 705 085 + 0;
  • 111 033 404 705 085 ÷ 2 = 55 516 702 352 542 + 1;
  • 55 516 702 352 542 ÷ 2 = 27 758 351 176 271 + 0;
  • 27 758 351 176 271 ÷ 2 = 13 879 175 588 135 + 1;
  • 13 879 175 588 135 ÷ 2 = 6 939 587 794 067 + 1;
  • 6 939 587 794 067 ÷ 2 = 3 469 793 897 033 + 1;
  • 3 469 793 897 033 ÷ 2 = 1 734 896 948 516 + 1;
  • 1 734 896 948 516 ÷ 2 = 867 448 474 258 + 0;
  • 867 448 474 258 ÷ 2 = 433 724 237 129 + 0;
  • 433 724 237 129 ÷ 2 = 216 862 118 564 + 1;
  • 216 862 118 564 ÷ 2 = 108 431 059 282 + 0;
  • 108 431 059 282 ÷ 2 = 54 215 529 641 + 0;
  • 54 215 529 641 ÷ 2 = 27 107 764 820 + 1;
  • 27 107 764 820 ÷ 2 = 13 553 882 410 + 0;
  • 13 553 882 410 ÷ 2 = 6 776 941 205 + 0;
  • 6 776 941 205 ÷ 2 = 3 388 470 602 + 1;
  • 3 388 470 602 ÷ 2 = 1 694 235 301 + 0;
  • 1 694 235 301 ÷ 2 = 847 117 650 + 1;
  • 847 117 650 ÷ 2 = 423 558 825 + 0;
  • 423 558 825 ÷ 2 = 211 779 412 + 1;
  • 211 779 412 ÷ 2 = 105 889 706 + 0;
  • 105 889 706 ÷ 2 = 52 944 853 + 0;
  • 52 944 853 ÷ 2 = 26 472 426 + 1;
  • 26 472 426 ÷ 2 = 13 236 213 + 0;
  • 13 236 213 ÷ 2 = 6 618 106 + 1;
  • 6 618 106 ÷ 2 = 3 309 053 + 0;
  • 3 309 053 ÷ 2 = 1 654 526 + 1;
  • 1 654 526 ÷ 2 = 827 263 + 0;
  • 827 263 ÷ 2 = 413 631 + 1;
  • 413 631 ÷ 2 = 206 815 + 1;
  • 206 815 ÷ 2 = 103 407 + 1;
  • 103 407 ÷ 2 = 51 703 + 1;
  • 51 703 ÷ 2 = 25 851 + 1;
  • 25 851 ÷ 2 = 12 925 + 1;
  • 12 925 ÷ 2 = 6 462 + 1;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 100 000 111 001 011 000 101 110 143(10) =


1100 1001 1111 0111 1111 0101 0100 1010 1001 0010 0111 1010 1111 1100 1010 0010 0010 1000 0110 0100 0001 0000 0001 0111 1111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 100 000 111 001 011 000 101 110 143(10) =


1100 1001 1111 0111 1111 0101 0100 1010 1001 0010 0111 1010 1111 1100 1010 0010 0010 1000 0110 0100 0001 0000 0001 0111 1111(2) =


1100 1001 1111 0111 1111 0101 0100 1010 1001 0010 0111 1010 1111 1100 1010 0010 0010 1000 0110 0100 0001 0000 0001 0111 1111(2) × 20 =


1.1001 0011 1110 1111 1110 1010 1001 0101 0010 0100 1111 0101 1111 1001 0100 0100 0101 0000 1100 1000 0010 0000 0010 1111 111(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 1111 1110 1010 1001 0101 0010 0100 1111 0101 1111 1001 0100 0100 0101 0000 1100 1000 0010 0000 0010 1111 111


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0111 1111 0101 0100 1010 1001 0010 0111 1010 1111 1100 1010 0010 0010 1000 0110 0100 0001 0000 0001 0111 1111 =


100 1001 1111 0111 1111 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0111 1111 0101


The base ten decimal number 1 000 100 000 111 001 011 000 101 110 143 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0111 1111 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -148.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:33 UTC (GMT)
Number 27.312 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:33 UTC (GMT)
Number 1 238 843 578 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number -49.312 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 2.182 818 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 1 062 207 557 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 0.190 381 954 205 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 6 960 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 2 147 421 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
Number 10 001 101 010 101 001 010 100 096 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 19:32 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111