32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 001 101 010 101 001 010 100 096 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 001 101 010 101 001 010 100 096(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 001 101 010 101 001 010 100 096 ÷ 2 = 5 000 550 505 050 500 505 050 048 + 0;
  • 5 000 550 505 050 500 505 050 048 ÷ 2 = 2 500 275 252 525 250 252 525 024 + 0;
  • 2 500 275 252 525 250 252 525 024 ÷ 2 = 1 250 137 626 262 625 126 262 512 + 0;
  • 1 250 137 626 262 625 126 262 512 ÷ 2 = 625 068 813 131 312 563 131 256 + 0;
  • 625 068 813 131 312 563 131 256 ÷ 2 = 312 534 406 565 656 281 565 628 + 0;
  • 312 534 406 565 656 281 565 628 ÷ 2 = 156 267 203 282 828 140 782 814 + 0;
  • 156 267 203 282 828 140 782 814 ÷ 2 = 78 133 601 641 414 070 391 407 + 0;
  • 78 133 601 641 414 070 391 407 ÷ 2 = 39 066 800 820 707 035 195 703 + 1;
  • 39 066 800 820 707 035 195 703 ÷ 2 = 19 533 400 410 353 517 597 851 + 1;
  • 19 533 400 410 353 517 597 851 ÷ 2 = 9 766 700 205 176 758 798 925 + 1;
  • 9 766 700 205 176 758 798 925 ÷ 2 = 4 883 350 102 588 379 399 462 + 1;
  • 4 883 350 102 588 379 399 462 ÷ 2 = 2 441 675 051 294 189 699 731 + 0;
  • 2 441 675 051 294 189 699 731 ÷ 2 = 1 220 837 525 647 094 849 865 + 1;
  • 1 220 837 525 647 094 849 865 ÷ 2 = 610 418 762 823 547 424 932 + 1;
  • 610 418 762 823 547 424 932 ÷ 2 = 305 209 381 411 773 712 466 + 0;
  • 305 209 381 411 773 712 466 ÷ 2 = 152 604 690 705 886 856 233 + 0;
  • 152 604 690 705 886 856 233 ÷ 2 = 76 302 345 352 943 428 116 + 1;
  • 76 302 345 352 943 428 116 ÷ 2 = 38 151 172 676 471 714 058 + 0;
  • 38 151 172 676 471 714 058 ÷ 2 = 19 075 586 338 235 857 029 + 0;
  • 19 075 586 338 235 857 029 ÷ 2 = 9 537 793 169 117 928 514 + 1;
  • 9 537 793 169 117 928 514 ÷ 2 = 4 768 896 584 558 964 257 + 0;
  • 4 768 896 584 558 964 257 ÷ 2 = 2 384 448 292 279 482 128 + 1;
  • 2 384 448 292 279 482 128 ÷ 2 = 1 192 224 146 139 741 064 + 0;
  • 1 192 224 146 139 741 064 ÷ 2 = 596 112 073 069 870 532 + 0;
  • 596 112 073 069 870 532 ÷ 2 = 298 056 036 534 935 266 + 0;
  • 298 056 036 534 935 266 ÷ 2 = 149 028 018 267 467 633 + 0;
  • 149 028 018 267 467 633 ÷ 2 = 74 514 009 133 733 816 + 1;
  • 74 514 009 133 733 816 ÷ 2 = 37 257 004 566 866 908 + 0;
  • 37 257 004 566 866 908 ÷ 2 = 18 628 502 283 433 454 + 0;
  • 18 628 502 283 433 454 ÷ 2 = 9 314 251 141 716 727 + 0;
  • 9 314 251 141 716 727 ÷ 2 = 4 657 125 570 858 363 + 1;
  • 4 657 125 570 858 363 ÷ 2 = 2 328 562 785 429 181 + 1;
  • 2 328 562 785 429 181 ÷ 2 = 1 164 281 392 714 590 + 1;
  • 1 164 281 392 714 590 ÷ 2 = 582 140 696 357 295 + 0;
  • 582 140 696 357 295 ÷ 2 = 291 070 348 178 647 + 1;
  • 291 070 348 178 647 ÷ 2 = 145 535 174 089 323 + 1;
  • 145 535 174 089 323 ÷ 2 = 72 767 587 044 661 + 1;
  • 72 767 587 044 661 ÷ 2 = 36 383 793 522 330 + 1;
  • 36 383 793 522 330 ÷ 2 = 18 191 896 761 165 + 0;
  • 18 191 896 761 165 ÷ 2 = 9 095 948 380 582 + 1;
  • 9 095 948 380 582 ÷ 2 = 4 547 974 190 291 + 0;
  • 4 547 974 190 291 ÷ 2 = 2 273 987 095 145 + 1;
  • 2 273 987 095 145 ÷ 2 = 1 136 993 547 572 + 1;
  • 1 136 993 547 572 ÷ 2 = 568 496 773 786 + 0;
  • 568 496 773 786 ÷ 2 = 284 248 386 893 + 0;
  • 284 248 386 893 ÷ 2 = 142 124 193 446 + 1;
  • 142 124 193 446 ÷ 2 = 71 062 096 723 + 0;
  • 71 062 096 723 ÷ 2 = 35 531 048 361 + 1;
  • 35 531 048 361 ÷ 2 = 17 765 524 180 + 1;
  • 17 765 524 180 ÷ 2 = 8 882 762 090 + 0;
  • 8 882 762 090 ÷ 2 = 4 441 381 045 + 0;
  • 4 441 381 045 ÷ 2 = 2 220 690 522 + 1;
  • 2 220 690 522 ÷ 2 = 1 110 345 261 + 0;
  • 1 110 345 261 ÷ 2 = 555 172 630 + 1;
  • 555 172 630 ÷ 2 = 277 586 315 + 0;
  • 277 586 315 ÷ 2 = 138 793 157 + 1;
  • 138 793 157 ÷ 2 = 69 396 578 + 1;
  • 69 396 578 ÷ 2 = 34 698 289 + 0;
  • 34 698 289 ÷ 2 = 17 349 144 + 1;
  • 17 349 144 ÷ 2 = 8 674 572 + 0;
  • 8 674 572 ÷ 2 = 4 337 286 + 0;
  • 4 337 286 ÷ 2 = 2 168 643 + 0;
  • 2 168 643 ÷ 2 = 1 084 321 + 1;
  • 1 084 321 ÷ 2 = 542 160 + 1;
  • 542 160 ÷ 2 = 271 080 + 0;
  • 271 080 ÷ 2 = 135 540 + 0;
  • 135 540 ÷ 2 = 67 770 + 0;
  • 67 770 ÷ 2 = 33 885 + 0;
  • 33 885 ÷ 2 = 16 942 + 1;
  • 16 942 ÷ 2 = 8 471 + 0;
  • 8 471 ÷ 2 = 4 235 + 1;
  • 4 235 ÷ 2 = 2 117 + 1;
  • 2 117 ÷ 2 = 1 058 + 1;
  • 1 058 ÷ 2 = 529 + 0;
  • 529 ÷ 2 = 264 + 1;
  • 264 ÷ 2 = 132 + 0;
  • 132 ÷ 2 = 66 + 0;
  • 66 ÷ 2 = 33 + 0;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 001 101 010 101 001 010 100 096(10) =


1000 0100 0101 1101 0000 1100 0101 1010 1001 1010 0110 1011 1101 1100 0100 0010 1001 0011 0111 1000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 83 positions to the left, so that only one non zero digit remains to the left of it:


10 001 101 010 101 001 010 100 096(10) =


1000 0100 0101 1101 0000 1100 0101 1010 1001 1010 0110 1011 1101 1100 0100 0010 1001 0011 0111 1000 0000(2) =


1000 0100 0101 1101 0000 1100 0101 1010 1001 1010 0110 1011 1101 1100 0100 0010 1001 0011 0111 1000 0000(2) × 20 =


1.0000 1000 1011 1010 0001 1000 1011 0101 0011 0100 1101 0111 1011 1000 1000 0101 0010 0110 1111 0000 000(2) × 283


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 83


Mantissa (not normalized):
1.0000 1000 1011 1010 0001 1000 1011 0101 0011 0100 1101 0111 1011 1000 1000 0101 0010 0110 1111 0000 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


83 + 2(8-1) - 1 =


(83 + 127)(10) =


210(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 210 ÷ 2 = 105 + 0;
  • 105 ÷ 2 = 52 + 1;
  • 52 ÷ 2 = 26 + 0;
  • 26 ÷ 2 = 13 + 0;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


210(10) =


1101 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0100 0101 1101 0000 1100 0101 1010 1001 1010 0110 1011 1101 1100 0100 0010 1001 0011 0111 1000 0000 =


000 0100 0101 1101 0000 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 0010


Mantissa (23 bits) =
000 0100 0101 1101 0000 1100


The base ten decimal number 10 001 101 010 101 001 010 100 096 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 0010 - 000 0100 0101 1101 0000 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 0.929 687 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 2 045.7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 0.066 67 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number -1.235 61 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number -2 062 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 42 801 000 011 110 101 099 999 999 999 999 991 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 4 575 250 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 101 110 979 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number -0.014 459 890 236 287 751 815 702 126 261 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
Number 1 638 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 19:40 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111