32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 018 803 416 6;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 018 803 416 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 037 606 833 2;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 037 606 833 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 075 213 666 4;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 075 213 666 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 150 427 332 8;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 150 427 332 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 300 854 665 6;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 300 854 665 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 601 709 331 2;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 601 709 331 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 203 418 662 4;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 001 203 418 662 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 002 406 837 324 8;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 002 406 837 324 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 004 813 674 649 6;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 004 813 674 649 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 009 627 349 299 2;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 009 627 349 299 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 019 254 698 598 4;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 019 254 698 598 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 038 509 397 196 8;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 038 509 397 196 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 077 018 794 393 6;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 077 018 794 393 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 154 037 588 787 2;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 154 037 588 787 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 308 075 177 574 4;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 308 075 177 574 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 616 150 355 148 8;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 616 150 355 148 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 232 300 710 297 6;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 001 232 300 710 297 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 002 464 601 420 595 2;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 002 464 601 420 595 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 004 929 202 841 190 4;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 004 929 202 841 190 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 009 858 405 682 380 8;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 009 858 405 682 380 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 019 716 811 364 761 6;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 019 716 811 364 761 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 039 433 622 729 523 2;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 039 433 622 729 523 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 078 867 245 459 046 4;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 078 867 245 459 046 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 157 734 490 918 092 8;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 157 734 490 918 092 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 315 468 981 836 185 6;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 315 468 981 836 185 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 630 937 963 672 371 2;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 630 937 963 672 371 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 261 875 927 344 742 4;
  • 28) 0.000 000 000 000 000 000 000 000 000 001 261 875 927 344 742 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 002 523 751 854 689 484 8;
  • 29) 0.000 000 000 000 000 000 000 000 000 002 523 751 854 689 484 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 005 047 503 709 378 969 6;
  • 30) 0.000 000 000 000 000 000 000 000 000 005 047 503 709 378 969 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 010 095 007 418 757 939 2;
  • 31) 0.000 000 000 000 000 000 000 000 000 010 095 007 418 757 939 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 020 190 014 837 515 878 4;
  • 32) 0.000 000 000 000 000 000 000 000 000 020 190 014 837 515 878 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 040 380 029 675 031 756 8;
  • 33) 0.000 000 000 000 000 000 000 000 000 040 380 029 675 031 756 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 080 760 059 350 063 513 6;
  • 34) 0.000 000 000 000 000 000 000 000 000 080 760 059 350 063 513 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 161 520 118 700 127 027 2;
  • 35) 0.000 000 000 000 000 000 000 000 000 161 520 118 700 127 027 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 323 040 237 400 254 054 4;
  • 36) 0.000 000 000 000 000 000 000 000 000 323 040 237 400 254 054 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 646 080 474 800 508 108 8;
  • 37) 0.000 000 000 000 000 000 000 000 000 646 080 474 800 508 108 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 292 160 949 601 016 217 6;
  • 38) 0.000 000 000 000 000 000 000 000 001 292 160 949 601 016 217 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 002 584 321 899 202 032 435 2;
  • 39) 0.000 000 000 000 000 000 000 000 002 584 321 899 202 032 435 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 005 168 643 798 404 064 870 4;
  • 40) 0.000 000 000 000 000 000 000 000 005 168 643 798 404 064 870 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 010 337 287 596 808 129 740 8;
  • 41) 0.000 000 000 000 000 000 000 000 010 337 287 596 808 129 740 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 020 674 575 193 616 259 481 6;
  • 42) 0.000 000 000 000 000 000 000 000 020 674 575 193 616 259 481 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 041 349 150 387 232 518 963 2;
  • 43) 0.000 000 000 000 000 000 000 000 041 349 150 387 232 518 963 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 082 698 300 774 465 037 926 4;
  • 44) 0.000 000 000 000 000 000 000 000 082 698 300 774 465 037 926 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 165 396 601 548 930 075 852 8;
  • 45) 0.000 000 000 000 000 000 000 000 165 396 601 548 930 075 852 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 330 793 203 097 860 151 705 6;
  • 46) 0.000 000 000 000 000 000 000 000 330 793 203 097 860 151 705 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 661 586 406 195 720 303 411 2;
  • 47) 0.000 000 000 000 000 000 000 000 661 586 406 195 720 303 411 2 × 2 = 0 + 0.000 000 000 000 000 000 000 001 323 172 812 391 440 606 822 4;
  • 48) 0.000 000 000 000 000 000 000 001 323 172 812 391 440 606 822 4 × 2 = 0 + 0.000 000 000 000 000 000 000 002 646 345 624 782 881 213 644 8;
  • 49) 0.000 000 000 000 000 000 000 002 646 345 624 782 881 213 644 8 × 2 = 0 + 0.000 000 000 000 000 000 000 005 292 691 249 565 762 427 289 6;
  • 50) 0.000 000 000 000 000 000 000 005 292 691 249 565 762 427 289 6 × 2 = 0 + 0.000 000 000 000 000 000 000 010 585 382 499 131 524 854 579 2;
  • 51) 0.000 000 000 000 000 000 000 010 585 382 499 131 524 854 579 2 × 2 = 0 + 0.000 000 000 000 000 000 000 021 170 764 998 263 049 709 158 4;
  • 52) 0.000 000 000 000 000 000 000 021 170 764 998 263 049 709 158 4 × 2 = 0 + 0.000 000 000 000 000 000 000 042 341 529 996 526 099 418 316 8;
  • 53) 0.000 000 000 000 000 000 000 042 341 529 996 526 099 418 316 8 × 2 = 0 + 0.000 000 000 000 000 000 000 084 683 059 993 052 198 836 633 6;
  • 54) 0.000 000 000 000 000 000 000 084 683 059 993 052 198 836 633 6 × 2 = 0 + 0.000 000 000 000 000 000 000 169 366 119 986 104 397 673 267 2;
  • 55) 0.000 000 000 000 000 000 000 169 366 119 986 104 397 673 267 2 × 2 = 0 + 0.000 000 000 000 000 000 000 338 732 239 972 208 795 346 534 4;
  • 56) 0.000 000 000 000 000 000 000 338 732 239 972 208 795 346 534 4 × 2 = 0 + 0.000 000 000 000 000 000 000 677 464 479 944 417 590 693 068 8;
  • 57) 0.000 000 000 000 000 000 000 677 464 479 944 417 590 693 068 8 × 2 = 0 + 0.000 000 000 000 000 000 001 354 928 959 888 835 181 386 137 6;
  • 58) 0.000 000 000 000 000 000 001 354 928 959 888 835 181 386 137 6 × 2 = 0 + 0.000 000 000 000 000 000 002 709 857 919 777 670 362 772 275 2;
  • 59) 0.000 000 000 000 000 000 002 709 857 919 777 670 362 772 275 2 × 2 = 0 + 0.000 000 000 000 000 000 005 419 715 839 555 340 725 544 550 4;
  • 60) 0.000 000 000 000 000 000 005 419 715 839 555 340 725 544 550 4 × 2 = 0 + 0.000 000 000 000 000 000 010 839 431 679 110 681 451 089 100 8;
  • 61) 0.000 000 000 000 000 000 010 839 431 679 110 681 451 089 100 8 × 2 = 0 + 0.000 000 000 000 000 000 021 678 863 358 221 362 902 178 201 6;
  • 62) 0.000 000 000 000 000 000 021 678 863 358 221 362 902 178 201 6 × 2 = 0 + 0.000 000 000 000 000 000 043 357 726 716 442 725 804 356 403 2;
  • 63) 0.000 000 000 000 000 000 043 357 726 716 442 725 804 356 403 2 × 2 = 0 + 0.000 000 000 000 000 000 086 715 453 432 885 451 608 712 806 4;
  • 64) 0.000 000 000 000 000 000 086 715 453 432 885 451 608 712 806 4 × 2 = 0 + 0.000 000 000 000 000 000 173 430 906 865 770 903 217 425 612 8;
  • 65) 0.000 000 000 000 000 000 173 430 906 865 770 903 217 425 612 8 × 2 = 0 + 0.000 000 000 000 000 000 346 861 813 731 541 806 434 851 225 6;
  • 66) 0.000 000 000 000 000 000 346 861 813 731 541 806 434 851 225 6 × 2 = 0 + 0.000 000 000 000 000 000 693 723 627 463 083 612 869 702 451 2;
  • 67) 0.000 000 000 000 000 000 693 723 627 463 083 612 869 702 451 2 × 2 = 0 + 0.000 000 000 000 000 001 387 447 254 926 167 225 739 404 902 4;
  • 68) 0.000 000 000 000 000 001 387 447 254 926 167 225 739 404 902 4 × 2 = 0 + 0.000 000 000 000 000 002 774 894 509 852 334 451 478 809 804 8;
  • 69) 0.000 000 000 000 000 002 774 894 509 852 334 451 478 809 804 8 × 2 = 0 + 0.000 000 000 000 000 005 549 789 019 704 668 902 957 619 609 6;
  • 70) 0.000 000 000 000 000 005 549 789 019 704 668 902 957 619 609 6 × 2 = 0 + 0.000 000 000 000 000 011 099 578 039 409 337 805 915 239 219 2;
  • 71) 0.000 000 000 000 000 011 099 578 039 409 337 805 915 239 219 2 × 2 = 0 + 0.000 000 000 000 000 022 199 156 078 818 675 611 830 478 438 4;
  • 72) 0.000 000 000 000 000 022 199 156 078 818 675 611 830 478 438 4 × 2 = 0 + 0.000 000 000 000 000 044 398 312 157 637 351 223 660 956 876 8;
  • 73) 0.000 000 000 000 000 044 398 312 157 637 351 223 660 956 876 8 × 2 = 0 + 0.000 000 000 000 000 088 796 624 315 274 702 447 321 913 753 6;
  • 74) 0.000 000 000 000 000 088 796 624 315 274 702 447 321 913 753 6 × 2 = 0 + 0.000 000 000 000 000 177 593 248 630 549 404 894 643 827 507 2;
  • 75) 0.000 000 000 000 000 177 593 248 630 549 404 894 643 827 507 2 × 2 = 0 + 0.000 000 000 000 000 355 186 497 261 098 809 789 287 655 014 4;
  • 76) 0.000 000 000 000 000 355 186 497 261 098 809 789 287 655 014 4 × 2 = 0 + 0.000 000 000 000 000 710 372 994 522 197 619 578 575 310 028 8;
  • 77) 0.000 000 000 000 000 710 372 994 522 197 619 578 575 310 028 8 × 2 = 0 + 0.000 000 000 000 001 420 745 989 044 395 239 157 150 620 057 6;
  • 78) 0.000 000 000 000 001 420 745 989 044 395 239 157 150 620 057 6 × 2 = 0 + 0.000 000 000 000 002 841 491 978 088 790 478 314 301 240 115 2;
  • 79) 0.000 000 000 000 002 841 491 978 088 790 478 314 301 240 115 2 × 2 = 0 + 0.000 000 000 000 005 682 983 956 177 580 956 628 602 480 230 4;
  • 80) 0.000 000 000 000 005 682 983 956 177 580 956 628 602 480 230 4 × 2 = 0 + 0.000 000 000 000 011 365 967 912 355 161 913 257 204 960 460 8;
  • 81) 0.000 000 000 000 011 365 967 912 355 161 913 257 204 960 460 8 × 2 = 0 + 0.000 000 000 000 022 731 935 824 710 323 826 514 409 920 921 6;
  • 82) 0.000 000 000 000 022 731 935 824 710 323 826 514 409 920 921 6 × 2 = 0 + 0.000 000 000 000 045 463 871 649 420 647 653 028 819 841 843 2;
  • 83) 0.000 000 000 000 045 463 871 649 420 647 653 028 819 841 843 2 × 2 = 0 + 0.000 000 000 000 090 927 743 298 841 295 306 057 639 683 686 4;
  • 84) 0.000 000 000 000 090 927 743 298 841 295 306 057 639 683 686 4 × 2 = 0 + 0.000 000 000 000 181 855 486 597 682 590 612 115 279 367 372 8;
  • 85) 0.000 000 000 000 181 855 486 597 682 590 612 115 279 367 372 8 × 2 = 0 + 0.000 000 000 000 363 710 973 195 365 181 224 230 558 734 745 6;
  • 86) 0.000 000 000 000 363 710 973 195 365 181 224 230 558 734 745 6 × 2 = 0 + 0.000 000 000 000 727 421 946 390 730 362 448 461 117 469 491 2;
  • 87) 0.000 000 000 000 727 421 946 390 730 362 448 461 117 469 491 2 × 2 = 0 + 0.000 000 000 001 454 843 892 781 460 724 896 922 234 938 982 4;
  • 88) 0.000 000 000 001 454 843 892 781 460 724 896 922 234 938 982 4 × 2 = 0 + 0.000 000 000 002 909 687 785 562 921 449 793 844 469 877 964 8;
  • 89) 0.000 000 000 002 909 687 785 562 921 449 793 844 469 877 964 8 × 2 = 0 + 0.000 000 000 005 819 375 571 125 842 899 587 688 939 755 929 6;
  • 90) 0.000 000 000 005 819 375 571 125 842 899 587 688 939 755 929 6 × 2 = 0 + 0.000 000 000 011 638 751 142 251 685 799 175 377 879 511 859 2;
  • 91) 0.000 000 000 011 638 751 142 251 685 799 175 377 879 511 859 2 × 2 = 0 + 0.000 000 000 023 277 502 284 503 371 598 350 755 759 023 718 4;
  • 92) 0.000 000 000 023 277 502 284 503 371 598 350 755 759 023 718 4 × 2 = 0 + 0.000 000 000 046 555 004 569 006 743 196 701 511 518 047 436 8;
  • 93) 0.000 000 000 046 555 004 569 006 743 196 701 511 518 047 436 8 × 2 = 0 + 0.000 000 000 093 110 009 138 013 486 393 403 023 036 094 873 6;
  • 94) 0.000 000 000 093 110 009 138 013 486 393 403 023 036 094 873 6 × 2 = 0 + 0.000 000 000 186 220 018 276 026 972 786 806 046 072 189 747 2;
  • 95) 0.000 000 000 186 220 018 276 026 972 786 806 046 072 189 747 2 × 2 = 0 + 0.000 000 000 372 440 036 552 053 945 573 612 092 144 379 494 4;
  • 96) 0.000 000 000 372 440 036 552 053 945 573 612 092 144 379 494 4 × 2 = 0 + 0.000 000 000 744 880 073 104 107 891 147 224 184 288 758 988 8;
  • 97) 0.000 000 000 744 880 073 104 107 891 147 224 184 288 758 988 8 × 2 = 0 + 0.000 000 001 489 760 146 208 215 782 294 448 368 577 517 977 6;
  • 98) 0.000 000 001 489 760 146 208 215 782 294 448 368 577 517 977 6 × 2 = 0 + 0.000 000 002 979 520 292 416 431 564 588 896 737 155 035 955 2;
  • 99) 0.000 000 002 979 520 292 416 431 564 588 896 737 155 035 955 2 × 2 = 0 + 0.000 000 005 959 040 584 832 863 129 177 793 474 310 071 910 4;
  • 100) 0.000 000 005 959 040 584 832 863 129 177 793 474 310 071 910 4 × 2 = 0 + 0.000 000 011 918 081 169 665 726 258 355 586 948 620 143 820 8;
  • 101) 0.000 000 011 918 081 169 665 726 258 355 586 948 620 143 820 8 × 2 = 0 + 0.000 000 023 836 162 339 331 452 516 711 173 897 240 287 641 6;
  • 102) 0.000 000 023 836 162 339 331 452 516 711 173 897 240 287 641 6 × 2 = 0 + 0.000 000 047 672 324 678 662 905 033 422 347 794 480 575 283 2;
  • 103) 0.000 000 047 672 324 678 662 905 033 422 347 794 480 575 283 2 × 2 = 0 + 0.000 000 095 344 649 357 325 810 066 844 695 588 961 150 566 4;
  • 104) 0.000 000 095 344 649 357 325 810 066 844 695 588 961 150 566 4 × 2 = 0 + 0.000 000 190 689 298 714 651 620 133 689 391 177 922 301 132 8;
  • 105) 0.000 000 190 689 298 714 651 620 133 689 391 177 922 301 132 8 × 2 = 0 + 0.000 000 381 378 597 429 303 240 267 378 782 355 844 602 265 6;
  • 106) 0.000 000 381 378 597 429 303 240 267 378 782 355 844 602 265 6 × 2 = 0 + 0.000 000 762 757 194 858 606 480 534 757 564 711 689 204 531 2;
  • 107) 0.000 000 762 757 194 858 606 480 534 757 564 711 689 204 531 2 × 2 = 0 + 0.000 001 525 514 389 717 212 961 069 515 129 423 378 409 062 4;
  • 108) 0.000 001 525 514 389 717 212 961 069 515 129 423 378 409 062 4 × 2 = 0 + 0.000 003 051 028 779 434 425 922 139 030 258 846 756 818 124 8;
  • 109) 0.000 003 051 028 779 434 425 922 139 030 258 846 756 818 124 8 × 2 = 0 + 0.000 006 102 057 558 868 851 844 278 060 517 693 513 636 249 6;
  • 110) 0.000 006 102 057 558 868 851 844 278 060 517 693 513 636 249 6 × 2 = 0 + 0.000 012 204 115 117 737 703 688 556 121 035 387 027 272 499 2;
  • 111) 0.000 012 204 115 117 737 703 688 556 121 035 387 027 272 499 2 × 2 = 0 + 0.000 024 408 230 235 475 407 377 112 242 070 774 054 544 998 4;
  • 112) 0.000 024 408 230 235 475 407 377 112 242 070 774 054 544 998 4 × 2 = 0 + 0.000 048 816 460 470 950 814 754 224 484 141 548 109 089 996 8;
  • 113) 0.000 048 816 460 470 950 814 754 224 484 141 548 109 089 996 8 × 2 = 0 + 0.000 097 632 920 941 901 629 508 448 968 283 096 218 179 993 6;
  • 114) 0.000 097 632 920 941 901 629 508 448 968 283 096 218 179 993 6 × 2 = 0 + 0.000 195 265 841 883 803 259 016 897 936 566 192 436 359 987 2;
  • 115) 0.000 195 265 841 883 803 259 016 897 936 566 192 436 359 987 2 × 2 = 0 + 0.000 390 531 683 767 606 518 033 795 873 132 384 872 719 974 4;
  • 116) 0.000 390 531 683 767 606 518 033 795 873 132 384 872 719 974 4 × 2 = 0 + 0.000 781 063 367 535 213 036 067 591 746 264 769 745 439 948 8;
  • 117) 0.000 781 063 367 535 213 036 067 591 746 264 769 745 439 948 8 × 2 = 0 + 0.001 562 126 735 070 426 072 135 183 492 529 539 490 879 897 6;
  • 118) 0.001 562 126 735 070 426 072 135 183 492 529 539 490 879 897 6 × 2 = 0 + 0.003 124 253 470 140 852 144 270 366 985 059 078 981 759 795 2;
  • 119) 0.003 124 253 470 140 852 144 270 366 985 059 078 981 759 795 2 × 2 = 0 + 0.006 248 506 940 281 704 288 540 733 970 118 157 963 519 590 4;
  • 120) 0.006 248 506 940 281 704 288 540 733 970 118 157 963 519 590 4 × 2 = 0 + 0.012 497 013 880 563 408 577 081 467 940 236 315 927 039 180 8;
  • 121) 0.012 497 013 880 563 408 577 081 467 940 236 315 927 039 180 8 × 2 = 0 + 0.024 994 027 761 126 817 154 162 935 880 472 631 854 078 361 6;
  • 122) 0.024 994 027 761 126 817 154 162 935 880 472 631 854 078 361 6 × 2 = 0 + 0.049 988 055 522 253 634 308 325 871 760 945 263 708 156 723 2;
  • 123) 0.049 988 055 522 253 634 308 325 871 760 945 263 708 156 723 2 × 2 = 0 + 0.099 976 111 044 507 268 616 651 743 521 890 527 416 313 446 4;
  • 124) 0.099 976 111 044 507 268 616 651 743 521 890 527 416 313 446 4 × 2 = 0 + 0.199 952 222 089 014 537 233 303 487 043 781 054 832 626 892 8;
  • 125) 0.199 952 222 089 014 537 233 303 487 043 781 054 832 626 892 8 × 2 = 0 + 0.399 904 444 178 029 074 466 606 974 087 562 109 665 253 785 6;
  • 126) 0.399 904 444 178 029 074 466 606 974 087 562 109 665 253 785 6 × 2 = 0 + 0.799 808 888 356 058 148 933 213 948 175 124 219 330 507 571 2;
  • 127) 0.799 808 888 356 058 148 933 213 948 175 124 219 330 507 571 2 × 2 = 1 + 0.599 617 776 712 116 297 866 427 896 350 248 438 661 015 142 4;
  • 128) 0.599 617 776 712 116 297 866 427 896 350 248 438 661 015 142 4 × 2 = 1 + 0.199 235 553 424 232 595 732 855 792 700 496 877 322 030 284 8;
  • 129) 0.199 235 553 424 232 595 732 855 792 700 496 877 322 030 284 8 × 2 = 0 + 0.398 471 106 848 465 191 465 711 585 400 993 754 644 060 569 6;
  • 130) 0.398 471 106 848 465 191 465 711 585 400 993 754 644 060 569 6 × 2 = 0 + 0.796 942 213 696 930 382 931 423 170 801 987 509 288 121 139 2;
  • 131) 0.796 942 213 696 930 382 931 423 170 801 987 509 288 121 139 2 × 2 = 1 + 0.593 884 427 393 860 765 862 846 341 603 975 018 576 242 278 4;
  • 132) 0.593 884 427 393 860 765 862 846 341 603 975 018 576 242 278 4 × 2 = 1 + 0.187 768 854 787 721 531 725 692 683 207 950 037 152 484 556 8;
  • 133) 0.187 768 854 787 721 531 725 692 683 207 950 037 152 484 556 8 × 2 = 0 + 0.375 537 709 575 443 063 451 385 366 415 900 074 304 969 113 6;
  • 134) 0.375 537 709 575 443 063 451 385 366 415 900 074 304 969 113 6 × 2 = 0 + 0.751 075 419 150 886 126 902 770 732 831 800 148 609 938 227 2;
  • 135) 0.751 075 419 150 886 126 902 770 732 831 800 148 609 938 227 2 × 2 = 1 + 0.502 150 838 301 772 253 805 541 465 663 600 297 219 876 454 4;
  • 136) 0.502 150 838 301 772 253 805 541 465 663 600 297 219 876 454 4 × 2 = 1 + 0.004 301 676 603 544 507 611 082 931 327 200 594 439 752 908 8;
  • 137) 0.004 301 676 603 544 507 611 082 931 327 200 594 439 752 908 8 × 2 = 0 + 0.008 603 353 207 089 015 222 165 862 654 401 188 879 505 817 6;
  • 138) 0.008 603 353 207 089 015 222 165 862 654 401 188 879 505 817 6 × 2 = 0 + 0.017 206 706 414 178 030 444 331 725 308 802 377 759 011 635 2;
  • 139) 0.017 206 706 414 178 030 444 331 725 308 802 377 759 011 635 2 × 2 = 0 + 0.034 413 412 828 356 060 888 663 450 617 604 755 518 023 270 4;
  • 140) 0.034 413 412 828 356 060 888 663 450 617 604 755 518 023 270 4 × 2 = 0 + 0.068 826 825 656 712 121 777 326 901 235 209 511 036 046 540 8;
  • 141) 0.068 826 825 656 712 121 777 326 901 235 209 511 036 046 540 8 × 2 = 0 + 0.137 653 651 313 424 243 554 653 802 470 419 022 072 093 081 6;
  • 142) 0.137 653 651 313 424 243 554 653 802 470 419 022 072 093 081 6 × 2 = 0 + 0.275 307 302 626 848 487 109 307 604 940 838 044 144 186 163 2;
  • 143) 0.275 307 302 626 848 487 109 307 604 940 838 044 144 186 163 2 × 2 = 0 + 0.550 614 605 253 696 974 218 615 209 881 676 088 288 372 326 4;
  • 144) 0.550 614 605 253 696 974 218 615 209 881 676 088 288 372 326 4 × 2 = 1 + 0.101 229 210 507 393 948 437 230 419 763 352 176 576 744 652 8;
  • 145) 0.101 229 210 507 393 948 437 230 419 763 352 176 576 744 652 8 × 2 = 0 + 0.202 458 421 014 787 896 874 460 839 526 704 353 153 489 305 6;
  • 146) 0.202 458 421 014 787 896 874 460 839 526 704 353 153 489 305 6 × 2 = 0 + 0.404 916 842 029 575 793 748 921 679 053 408 706 306 978 611 2;
  • 147) 0.404 916 842 029 575 793 748 921 679 053 408 706 306 978 611 2 × 2 = 0 + 0.809 833 684 059 151 587 497 843 358 106 817 412 613 957 222 4;
  • 148) 0.809 833 684 059 151 587 497 843 358 106 817 412 613 957 222 4 × 2 = 1 + 0.619 667 368 118 303 174 995 686 716 213 634 825 227 914 444 8;
  • 149) 0.619 667 368 118 303 174 995 686 716 213 634 825 227 914 444 8 × 2 = 1 + 0.239 334 736 236 606 349 991 373 432 427 269 650 455 828 889 6;
  • 150) 0.239 334 736 236 606 349 991 373 432 427 269 650 455 828 889 6 × 2 = 0 + 0.478 669 472 473 212 699 982 746 864 854 539 300 911 657 779 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2) × 20 =


1.1001 1001 1000 0000 1000 110(2) × 2-127


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.1001 1001 1000 0000 1000 110


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-127 + 2(8-1) - 1 =


(-127 + 127)(10) =


0(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


0(10) =


0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 100 1100 1100 0000 0100 0110 =


100 1100 1100 0000 0100 0110


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
100 1100 1100 0000 0100 0110


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 3 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 100 1100 1100 0000 0100 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 025.256 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 1 101 111 437 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 0.910 994 78 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 10 001 101 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 59 000 073 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 2.310 575 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 42 008 165 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 1.041 666 666 662 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number -912.46 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
Number 33 204 391 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 05:28 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111