32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 018 803 416 4;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 018 803 416 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 037 606 832 8;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 037 606 832 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 075 213 665 6;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 075 213 665 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 150 427 331 2;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 150 427 331 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 300 854 662 4;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 300 854 662 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 601 709 324 8;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 601 709 324 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 203 418 649 6;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 001 203 418 649 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 002 406 837 299 2;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 002 406 837 299 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 004 813 674 598 4;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 004 813 674 598 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 009 627 349 196 8;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 009 627 349 196 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 019 254 698 393 6;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 019 254 698 393 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 038 509 396 787 2;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 038 509 396 787 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 077 018 793 574 4;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 077 018 793 574 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 154 037 587 148 8;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 154 037 587 148 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 308 075 174 297 6;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 308 075 174 297 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 616 150 348 595 2;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 616 150 348 595 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 232 300 697 190 4;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 001 232 300 697 190 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 002 464 601 394 380 8;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 002 464 601 394 380 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 004 929 202 788 761 6;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 004 929 202 788 761 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 009 858 405 577 523 2;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 009 858 405 577 523 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 019 716 811 155 046 4;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 019 716 811 155 046 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 039 433 622 310 092 8;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 039 433 622 310 092 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 078 867 244 620 185 6;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 078 867 244 620 185 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 157 734 489 240 371 2;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 157 734 489 240 371 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 315 468 978 480 742 4;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 315 468 978 480 742 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 630 937 956 961 484 8;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 630 937 956 961 484 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 261 875 913 922 969 6;
  • 28) 0.000 000 000 000 000 000 000 000 000 001 261 875 913 922 969 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 002 523 751 827 845 939 2;
  • 29) 0.000 000 000 000 000 000 000 000 000 002 523 751 827 845 939 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 005 047 503 655 691 878 4;
  • 30) 0.000 000 000 000 000 000 000 000 000 005 047 503 655 691 878 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 010 095 007 311 383 756 8;
  • 31) 0.000 000 000 000 000 000 000 000 000 010 095 007 311 383 756 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 020 190 014 622 767 513 6;
  • 32) 0.000 000 000 000 000 000 000 000 000 020 190 014 622 767 513 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 040 380 029 245 535 027 2;
  • 33) 0.000 000 000 000 000 000 000 000 000 040 380 029 245 535 027 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 080 760 058 491 070 054 4;
  • 34) 0.000 000 000 000 000 000 000 000 000 080 760 058 491 070 054 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 161 520 116 982 140 108 8;
  • 35) 0.000 000 000 000 000 000 000 000 000 161 520 116 982 140 108 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 323 040 233 964 280 217 6;
  • 36) 0.000 000 000 000 000 000 000 000 000 323 040 233 964 280 217 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 646 080 467 928 560 435 2;
  • 37) 0.000 000 000 000 000 000 000 000 000 646 080 467 928 560 435 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 292 160 935 857 120 870 4;
  • 38) 0.000 000 000 000 000 000 000 000 001 292 160 935 857 120 870 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 002 584 321 871 714 241 740 8;
  • 39) 0.000 000 000 000 000 000 000 000 002 584 321 871 714 241 740 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 005 168 643 743 428 483 481 6;
  • 40) 0.000 000 000 000 000 000 000 000 005 168 643 743 428 483 481 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 010 337 287 486 856 966 963 2;
  • 41) 0.000 000 000 000 000 000 000 000 010 337 287 486 856 966 963 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 020 674 574 973 713 933 926 4;
  • 42) 0.000 000 000 000 000 000 000 000 020 674 574 973 713 933 926 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 041 349 149 947 427 867 852 8;
  • 43) 0.000 000 000 000 000 000 000 000 041 349 149 947 427 867 852 8 × 2 = 0 + 0.000 000 000 000 000 000 000 000 082 698 299 894 855 735 705 6;
  • 44) 0.000 000 000 000 000 000 000 000 082 698 299 894 855 735 705 6 × 2 = 0 + 0.000 000 000 000 000 000 000 000 165 396 599 789 711 471 411 2;
  • 45) 0.000 000 000 000 000 000 000 000 165 396 599 789 711 471 411 2 × 2 = 0 + 0.000 000 000 000 000 000 000 000 330 793 199 579 422 942 822 4;
  • 46) 0.000 000 000 000 000 000 000 000 330 793 199 579 422 942 822 4 × 2 = 0 + 0.000 000 000 000 000 000 000 000 661 586 399 158 845 885 644 8;
  • 47) 0.000 000 000 000 000 000 000 000 661 586 399 158 845 885 644 8 × 2 = 0 + 0.000 000 000 000 000 000 000 001 323 172 798 317 691 771 289 6;
  • 48) 0.000 000 000 000 000 000 000 001 323 172 798 317 691 771 289 6 × 2 = 0 + 0.000 000 000 000 000 000 000 002 646 345 596 635 383 542 579 2;
  • 49) 0.000 000 000 000 000 000 000 002 646 345 596 635 383 542 579 2 × 2 = 0 + 0.000 000 000 000 000 000 000 005 292 691 193 270 767 085 158 4;
  • 50) 0.000 000 000 000 000 000 000 005 292 691 193 270 767 085 158 4 × 2 = 0 + 0.000 000 000 000 000 000 000 010 585 382 386 541 534 170 316 8;
  • 51) 0.000 000 000 000 000 000 000 010 585 382 386 541 534 170 316 8 × 2 = 0 + 0.000 000 000 000 000 000 000 021 170 764 773 083 068 340 633 6;
  • 52) 0.000 000 000 000 000 000 000 021 170 764 773 083 068 340 633 6 × 2 = 0 + 0.000 000 000 000 000 000 000 042 341 529 546 166 136 681 267 2;
  • 53) 0.000 000 000 000 000 000 000 042 341 529 546 166 136 681 267 2 × 2 = 0 + 0.000 000 000 000 000 000 000 084 683 059 092 332 273 362 534 4;
  • 54) 0.000 000 000 000 000 000 000 084 683 059 092 332 273 362 534 4 × 2 = 0 + 0.000 000 000 000 000 000 000 169 366 118 184 664 546 725 068 8;
  • 55) 0.000 000 000 000 000 000 000 169 366 118 184 664 546 725 068 8 × 2 = 0 + 0.000 000 000 000 000 000 000 338 732 236 369 329 093 450 137 6;
  • 56) 0.000 000 000 000 000 000 000 338 732 236 369 329 093 450 137 6 × 2 = 0 + 0.000 000 000 000 000 000 000 677 464 472 738 658 186 900 275 2;
  • 57) 0.000 000 000 000 000 000 000 677 464 472 738 658 186 900 275 2 × 2 = 0 + 0.000 000 000 000 000 000 001 354 928 945 477 316 373 800 550 4;
  • 58) 0.000 000 000 000 000 000 001 354 928 945 477 316 373 800 550 4 × 2 = 0 + 0.000 000 000 000 000 000 002 709 857 890 954 632 747 601 100 8;
  • 59) 0.000 000 000 000 000 000 002 709 857 890 954 632 747 601 100 8 × 2 = 0 + 0.000 000 000 000 000 000 005 419 715 781 909 265 495 202 201 6;
  • 60) 0.000 000 000 000 000 000 005 419 715 781 909 265 495 202 201 6 × 2 = 0 + 0.000 000 000 000 000 000 010 839 431 563 818 530 990 404 403 2;
  • 61) 0.000 000 000 000 000 000 010 839 431 563 818 530 990 404 403 2 × 2 = 0 + 0.000 000 000 000 000 000 021 678 863 127 637 061 980 808 806 4;
  • 62) 0.000 000 000 000 000 000 021 678 863 127 637 061 980 808 806 4 × 2 = 0 + 0.000 000 000 000 000 000 043 357 726 255 274 123 961 617 612 8;
  • 63) 0.000 000 000 000 000 000 043 357 726 255 274 123 961 617 612 8 × 2 = 0 + 0.000 000 000 000 000 000 086 715 452 510 548 247 923 235 225 6;
  • 64) 0.000 000 000 000 000 000 086 715 452 510 548 247 923 235 225 6 × 2 = 0 + 0.000 000 000 000 000 000 173 430 905 021 096 495 846 470 451 2;
  • 65) 0.000 000 000 000 000 000 173 430 905 021 096 495 846 470 451 2 × 2 = 0 + 0.000 000 000 000 000 000 346 861 810 042 192 991 692 940 902 4;
  • 66) 0.000 000 000 000 000 000 346 861 810 042 192 991 692 940 902 4 × 2 = 0 + 0.000 000 000 000 000 000 693 723 620 084 385 983 385 881 804 8;
  • 67) 0.000 000 000 000 000 000 693 723 620 084 385 983 385 881 804 8 × 2 = 0 + 0.000 000 000 000 000 001 387 447 240 168 771 966 771 763 609 6;
  • 68) 0.000 000 000 000 000 001 387 447 240 168 771 966 771 763 609 6 × 2 = 0 + 0.000 000 000 000 000 002 774 894 480 337 543 933 543 527 219 2;
  • 69) 0.000 000 000 000 000 002 774 894 480 337 543 933 543 527 219 2 × 2 = 0 + 0.000 000 000 000 000 005 549 788 960 675 087 867 087 054 438 4;
  • 70) 0.000 000 000 000 000 005 549 788 960 675 087 867 087 054 438 4 × 2 = 0 + 0.000 000 000 000 000 011 099 577 921 350 175 734 174 108 876 8;
  • 71) 0.000 000 000 000 000 011 099 577 921 350 175 734 174 108 876 8 × 2 = 0 + 0.000 000 000 000 000 022 199 155 842 700 351 468 348 217 753 6;
  • 72) 0.000 000 000 000 000 022 199 155 842 700 351 468 348 217 753 6 × 2 = 0 + 0.000 000 000 000 000 044 398 311 685 400 702 936 696 435 507 2;
  • 73) 0.000 000 000 000 000 044 398 311 685 400 702 936 696 435 507 2 × 2 = 0 + 0.000 000 000 000 000 088 796 623 370 801 405 873 392 871 014 4;
  • 74) 0.000 000 000 000 000 088 796 623 370 801 405 873 392 871 014 4 × 2 = 0 + 0.000 000 000 000 000 177 593 246 741 602 811 746 785 742 028 8;
  • 75) 0.000 000 000 000 000 177 593 246 741 602 811 746 785 742 028 8 × 2 = 0 + 0.000 000 000 000 000 355 186 493 483 205 623 493 571 484 057 6;
  • 76) 0.000 000 000 000 000 355 186 493 483 205 623 493 571 484 057 6 × 2 = 0 + 0.000 000 000 000 000 710 372 986 966 411 246 987 142 968 115 2;
  • 77) 0.000 000 000 000 000 710 372 986 966 411 246 987 142 968 115 2 × 2 = 0 + 0.000 000 000 000 001 420 745 973 932 822 493 974 285 936 230 4;
  • 78) 0.000 000 000 000 001 420 745 973 932 822 493 974 285 936 230 4 × 2 = 0 + 0.000 000 000 000 002 841 491 947 865 644 987 948 571 872 460 8;
  • 79) 0.000 000 000 000 002 841 491 947 865 644 987 948 571 872 460 8 × 2 = 0 + 0.000 000 000 000 005 682 983 895 731 289 975 897 143 744 921 6;
  • 80) 0.000 000 000 000 005 682 983 895 731 289 975 897 143 744 921 6 × 2 = 0 + 0.000 000 000 000 011 365 967 791 462 579 951 794 287 489 843 2;
  • 81) 0.000 000 000 000 011 365 967 791 462 579 951 794 287 489 843 2 × 2 = 0 + 0.000 000 000 000 022 731 935 582 925 159 903 588 574 979 686 4;
  • 82) 0.000 000 000 000 022 731 935 582 925 159 903 588 574 979 686 4 × 2 = 0 + 0.000 000 000 000 045 463 871 165 850 319 807 177 149 959 372 8;
  • 83) 0.000 000 000 000 045 463 871 165 850 319 807 177 149 959 372 8 × 2 = 0 + 0.000 000 000 000 090 927 742 331 700 639 614 354 299 918 745 6;
  • 84) 0.000 000 000 000 090 927 742 331 700 639 614 354 299 918 745 6 × 2 = 0 + 0.000 000 000 000 181 855 484 663 401 279 228 708 599 837 491 2;
  • 85) 0.000 000 000 000 181 855 484 663 401 279 228 708 599 837 491 2 × 2 = 0 + 0.000 000 000 000 363 710 969 326 802 558 457 417 199 674 982 4;
  • 86) 0.000 000 000 000 363 710 969 326 802 558 457 417 199 674 982 4 × 2 = 0 + 0.000 000 000 000 727 421 938 653 605 116 914 834 399 349 964 8;
  • 87) 0.000 000 000 000 727 421 938 653 605 116 914 834 399 349 964 8 × 2 = 0 + 0.000 000 000 001 454 843 877 307 210 233 829 668 798 699 929 6;
  • 88) 0.000 000 000 001 454 843 877 307 210 233 829 668 798 699 929 6 × 2 = 0 + 0.000 000 000 002 909 687 754 614 420 467 659 337 597 399 859 2;
  • 89) 0.000 000 000 002 909 687 754 614 420 467 659 337 597 399 859 2 × 2 = 0 + 0.000 000 000 005 819 375 509 228 840 935 318 675 194 799 718 4;
  • 90) 0.000 000 000 005 819 375 509 228 840 935 318 675 194 799 718 4 × 2 = 0 + 0.000 000 000 011 638 751 018 457 681 870 637 350 389 599 436 8;
  • 91) 0.000 000 000 011 638 751 018 457 681 870 637 350 389 599 436 8 × 2 = 0 + 0.000 000 000 023 277 502 036 915 363 741 274 700 779 198 873 6;
  • 92) 0.000 000 000 023 277 502 036 915 363 741 274 700 779 198 873 6 × 2 = 0 + 0.000 000 000 046 555 004 073 830 727 482 549 401 558 397 747 2;
  • 93) 0.000 000 000 046 555 004 073 830 727 482 549 401 558 397 747 2 × 2 = 0 + 0.000 000 000 093 110 008 147 661 454 965 098 803 116 795 494 4;
  • 94) 0.000 000 000 093 110 008 147 661 454 965 098 803 116 795 494 4 × 2 = 0 + 0.000 000 000 186 220 016 295 322 909 930 197 606 233 590 988 8;
  • 95) 0.000 000 000 186 220 016 295 322 909 930 197 606 233 590 988 8 × 2 = 0 + 0.000 000 000 372 440 032 590 645 819 860 395 212 467 181 977 6;
  • 96) 0.000 000 000 372 440 032 590 645 819 860 395 212 467 181 977 6 × 2 = 0 + 0.000 000 000 744 880 065 181 291 639 720 790 424 934 363 955 2;
  • 97) 0.000 000 000 744 880 065 181 291 639 720 790 424 934 363 955 2 × 2 = 0 + 0.000 000 001 489 760 130 362 583 279 441 580 849 868 727 910 4;
  • 98) 0.000 000 001 489 760 130 362 583 279 441 580 849 868 727 910 4 × 2 = 0 + 0.000 000 002 979 520 260 725 166 558 883 161 699 737 455 820 8;
  • 99) 0.000 000 002 979 520 260 725 166 558 883 161 699 737 455 820 8 × 2 = 0 + 0.000 000 005 959 040 521 450 333 117 766 323 399 474 911 641 6;
  • 100) 0.000 000 005 959 040 521 450 333 117 766 323 399 474 911 641 6 × 2 = 0 + 0.000 000 011 918 081 042 900 666 235 532 646 798 949 823 283 2;
  • 101) 0.000 000 011 918 081 042 900 666 235 532 646 798 949 823 283 2 × 2 = 0 + 0.000 000 023 836 162 085 801 332 471 065 293 597 899 646 566 4;
  • 102) 0.000 000 023 836 162 085 801 332 471 065 293 597 899 646 566 4 × 2 = 0 + 0.000 000 047 672 324 171 602 664 942 130 587 195 799 293 132 8;
  • 103) 0.000 000 047 672 324 171 602 664 942 130 587 195 799 293 132 8 × 2 = 0 + 0.000 000 095 344 648 343 205 329 884 261 174 391 598 586 265 6;
  • 104) 0.000 000 095 344 648 343 205 329 884 261 174 391 598 586 265 6 × 2 = 0 + 0.000 000 190 689 296 686 410 659 768 522 348 783 197 172 531 2;
  • 105) 0.000 000 190 689 296 686 410 659 768 522 348 783 197 172 531 2 × 2 = 0 + 0.000 000 381 378 593 372 821 319 537 044 697 566 394 345 062 4;
  • 106) 0.000 000 381 378 593 372 821 319 537 044 697 566 394 345 062 4 × 2 = 0 + 0.000 000 762 757 186 745 642 639 074 089 395 132 788 690 124 8;
  • 107) 0.000 000 762 757 186 745 642 639 074 089 395 132 788 690 124 8 × 2 = 0 + 0.000 001 525 514 373 491 285 278 148 178 790 265 577 380 249 6;
  • 108) 0.000 001 525 514 373 491 285 278 148 178 790 265 577 380 249 6 × 2 = 0 + 0.000 003 051 028 746 982 570 556 296 357 580 531 154 760 499 2;
  • 109) 0.000 003 051 028 746 982 570 556 296 357 580 531 154 760 499 2 × 2 = 0 + 0.000 006 102 057 493 965 141 112 592 715 161 062 309 520 998 4;
  • 110) 0.000 006 102 057 493 965 141 112 592 715 161 062 309 520 998 4 × 2 = 0 + 0.000 012 204 114 987 930 282 225 185 430 322 124 619 041 996 8;
  • 111) 0.000 012 204 114 987 930 282 225 185 430 322 124 619 041 996 8 × 2 = 0 + 0.000 024 408 229 975 860 564 450 370 860 644 249 238 083 993 6;
  • 112) 0.000 024 408 229 975 860 564 450 370 860 644 249 238 083 993 6 × 2 = 0 + 0.000 048 816 459 951 721 128 900 741 721 288 498 476 167 987 2;
  • 113) 0.000 048 816 459 951 721 128 900 741 721 288 498 476 167 987 2 × 2 = 0 + 0.000 097 632 919 903 442 257 801 483 442 576 996 952 335 974 4;
  • 114) 0.000 097 632 919 903 442 257 801 483 442 576 996 952 335 974 4 × 2 = 0 + 0.000 195 265 839 806 884 515 602 966 885 153 993 904 671 948 8;
  • 115) 0.000 195 265 839 806 884 515 602 966 885 153 993 904 671 948 8 × 2 = 0 + 0.000 390 531 679 613 769 031 205 933 770 307 987 809 343 897 6;
  • 116) 0.000 390 531 679 613 769 031 205 933 770 307 987 809 343 897 6 × 2 = 0 + 0.000 781 063 359 227 538 062 411 867 540 615 975 618 687 795 2;
  • 117) 0.000 781 063 359 227 538 062 411 867 540 615 975 618 687 795 2 × 2 = 0 + 0.001 562 126 718 455 076 124 823 735 081 231 951 237 375 590 4;
  • 118) 0.001 562 126 718 455 076 124 823 735 081 231 951 237 375 590 4 × 2 = 0 + 0.003 124 253 436 910 152 249 647 470 162 463 902 474 751 180 8;
  • 119) 0.003 124 253 436 910 152 249 647 470 162 463 902 474 751 180 8 × 2 = 0 + 0.006 248 506 873 820 304 499 294 940 324 927 804 949 502 361 6;
  • 120) 0.006 248 506 873 820 304 499 294 940 324 927 804 949 502 361 6 × 2 = 0 + 0.012 497 013 747 640 608 998 589 880 649 855 609 899 004 723 2;
  • 121) 0.012 497 013 747 640 608 998 589 880 649 855 609 899 004 723 2 × 2 = 0 + 0.024 994 027 495 281 217 997 179 761 299 711 219 798 009 446 4;
  • 122) 0.024 994 027 495 281 217 997 179 761 299 711 219 798 009 446 4 × 2 = 0 + 0.049 988 054 990 562 435 994 359 522 599 422 439 596 018 892 8;
  • 123) 0.049 988 054 990 562 435 994 359 522 599 422 439 596 018 892 8 × 2 = 0 + 0.099 976 109 981 124 871 988 719 045 198 844 879 192 037 785 6;
  • 124) 0.099 976 109 981 124 871 988 719 045 198 844 879 192 037 785 6 × 2 = 0 + 0.199 952 219 962 249 743 977 438 090 397 689 758 384 075 571 2;
  • 125) 0.199 952 219 962 249 743 977 438 090 397 689 758 384 075 571 2 × 2 = 0 + 0.399 904 439 924 499 487 954 876 180 795 379 516 768 151 142 4;
  • 126) 0.399 904 439 924 499 487 954 876 180 795 379 516 768 151 142 4 × 2 = 0 + 0.799 808 879 848 998 975 909 752 361 590 759 033 536 302 284 8;
  • 127) 0.799 808 879 848 998 975 909 752 361 590 759 033 536 302 284 8 × 2 = 1 + 0.599 617 759 697 997 951 819 504 723 181 518 067 072 604 569 6;
  • 128) 0.599 617 759 697 997 951 819 504 723 181 518 067 072 604 569 6 × 2 = 1 + 0.199 235 519 395 995 903 639 009 446 363 036 134 145 209 139 2;
  • 129) 0.199 235 519 395 995 903 639 009 446 363 036 134 145 209 139 2 × 2 = 0 + 0.398 471 038 791 991 807 278 018 892 726 072 268 290 418 278 4;
  • 130) 0.398 471 038 791 991 807 278 018 892 726 072 268 290 418 278 4 × 2 = 0 + 0.796 942 077 583 983 614 556 037 785 452 144 536 580 836 556 8;
  • 131) 0.796 942 077 583 983 614 556 037 785 452 144 536 580 836 556 8 × 2 = 1 + 0.593 884 155 167 967 229 112 075 570 904 289 073 161 673 113 6;
  • 132) 0.593 884 155 167 967 229 112 075 570 904 289 073 161 673 113 6 × 2 = 1 + 0.187 768 310 335 934 458 224 151 141 808 578 146 323 346 227 2;
  • 133) 0.187 768 310 335 934 458 224 151 141 808 578 146 323 346 227 2 × 2 = 0 + 0.375 536 620 671 868 916 448 302 283 617 156 292 646 692 454 4;
  • 134) 0.375 536 620 671 868 916 448 302 283 617 156 292 646 692 454 4 × 2 = 0 + 0.751 073 241 343 737 832 896 604 567 234 312 585 293 384 908 8;
  • 135) 0.751 073 241 343 737 832 896 604 567 234 312 585 293 384 908 8 × 2 = 1 + 0.502 146 482 687 475 665 793 209 134 468 625 170 586 769 817 6;
  • 136) 0.502 146 482 687 475 665 793 209 134 468 625 170 586 769 817 6 × 2 = 1 + 0.004 292 965 374 951 331 586 418 268 937 250 341 173 539 635 2;
  • 137) 0.004 292 965 374 951 331 586 418 268 937 250 341 173 539 635 2 × 2 = 0 + 0.008 585 930 749 902 663 172 836 537 874 500 682 347 079 270 4;
  • 138) 0.008 585 930 749 902 663 172 836 537 874 500 682 347 079 270 4 × 2 = 0 + 0.017 171 861 499 805 326 345 673 075 749 001 364 694 158 540 8;
  • 139) 0.017 171 861 499 805 326 345 673 075 749 001 364 694 158 540 8 × 2 = 0 + 0.034 343 722 999 610 652 691 346 151 498 002 729 388 317 081 6;
  • 140) 0.034 343 722 999 610 652 691 346 151 498 002 729 388 317 081 6 × 2 = 0 + 0.068 687 445 999 221 305 382 692 302 996 005 458 776 634 163 2;
  • 141) 0.068 687 445 999 221 305 382 692 302 996 005 458 776 634 163 2 × 2 = 0 + 0.137 374 891 998 442 610 765 384 605 992 010 917 553 268 326 4;
  • 142) 0.137 374 891 998 442 610 765 384 605 992 010 917 553 268 326 4 × 2 = 0 + 0.274 749 783 996 885 221 530 769 211 984 021 835 106 536 652 8;
  • 143) 0.274 749 783 996 885 221 530 769 211 984 021 835 106 536 652 8 × 2 = 0 + 0.549 499 567 993 770 443 061 538 423 968 043 670 213 073 305 6;
  • 144) 0.549 499 567 993 770 443 061 538 423 968 043 670 213 073 305 6 × 2 = 1 + 0.098 999 135 987 540 886 123 076 847 936 087 340 426 146 611 2;
  • 145) 0.098 999 135 987 540 886 123 076 847 936 087 340 426 146 611 2 × 2 = 0 + 0.197 998 271 975 081 772 246 153 695 872 174 680 852 293 222 4;
  • 146) 0.197 998 271 975 081 772 246 153 695 872 174 680 852 293 222 4 × 2 = 0 + 0.395 996 543 950 163 544 492 307 391 744 349 361 704 586 444 8;
  • 147) 0.395 996 543 950 163 544 492 307 391 744 349 361 704 586 444 8 × 2 = 0 + 0.791 993 087 900 327 088 984 614 783 488 698 723 409 172 889 6;
  • 148) 0.791 993 087 900 327 088 984 614 783 488 698 723 409 172 889 6 × 2 = 1 + 0.583 986 175 800 654 177 969 229 566 977 397 446 818 345 779 2;
  • 149) 0.583 986 175 800 654 177 969 229 566 977 397 446 818 345 779 2 × 2 = 1 + 0.167 972 351 601 308 355 938 459 133 954 794 893 636 691 558 4;
  • 150) 0.167 972 351 601 308 355 938 459 133 954 794 893 636 691 558 4 × 2 = 0 + 0.335 944 703 202 616 711 876 918 267 909 589 787 273 383 116 8;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0011 0011 0000 0001 0001 10(2) × 20 =


1.1001 1001 1000 0000 1000 110(2) × 2-127


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.1001 1001 1000 0000 1000 110


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-127 + 2(8-1) - 1 =


(-127 + 127)(10) =


0(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


0(10) =


0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 100 1100 1100 0000 0100 0110 =


100 1100 1100 0000 0100 0110


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
100 1100 1100 0000 0100 0110


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 009 401 708 2 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 100 1100 1100 0000 0100 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 2.843 78 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 288.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number -428.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 10.987 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 432 098 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 55 822 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 1 078 529 518 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 22 269 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 594.21 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
Number 83.66 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 11:46 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111