32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 943 508 222 875 079 687 38;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 943 508 222 875 079 687 38 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 887 016 445 750 159 374 76;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 887 016 445 750 159 374 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 774 032 891 500 318 749 52;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 774 032 891 500 318 749 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 548 065 783 000 637 499 04;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 548 065 783 000 637 499 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 188 079 096 131 566 001 274 998 08;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 188 079 096 131 566 001 274 998 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 376 158 192 263 132 002 549 996 16;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 376 158 192 263 132 002 549 996 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 752 316 384 526 264 005 099 992 32;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 752 316 384 526 264 005 099 992 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 504 632 769 052 528 010 199 984 64;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 001 504 632 769 052 528 010 199 984 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 009 265 538 105 056 020 399 969 28;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 003 009 265 538 105 056 020 399 969 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 006 018 531 076 210 112 040 799 938 56;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 006 018 531 076 210 112 040 799 938 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 012 037 062 152 420 224 081 599 877 12;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 012 037 062 152 420 224 081 599 877 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 024 074 124 304 840 448 163 199 754 24;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 024 074 124 304 840 448 163 199 754 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 048 148 248 609 680 896 326 399 508 48;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 048 148 248 609 680 896 326 399 508 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 096 296 497 219 361 792 652 799 016 96;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 096 296 497 219 361 792 652 799 016 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 192 592 994 438 723 585 305 598 033 92;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 192 592 994 438 723 585 305 598 033 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 385 185 988 877 447 170 611 196 067 84;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 385 185 988 877 447 170 611 196 067 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 770 371 977 754 894 341 222 392 135 68;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 770 371 977 754 894 341 222 392 135 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 540 743 955 509 788 682 444 784 271 36;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 001 540 743 955 509 788 682 444 784 271 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 081 487 911 019 577 364 889 568 542 72;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 003 081 487 911 019 577 364 889 568 542 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 006 162 975 822 039 154 729 779 137 085 44;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 006 162 975 822 039 154 729 779 137 085 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 012 325 951 644 078 309 459 558 274 170 88;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 012 325 951 644 078 309 459 558 274 170 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 024 651 903 288 156 618 919 116 548 341 76;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 024 651 903 288 156 618 919 116 548 341 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 049 303 806 576 313 237 838 233 096 683 52;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 049 303 806 576 313 237 838 233 096 683 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 098 607 613 152 626 475 676 466 193 367 04;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 098 607 613 152 626 475 676 466 193 367 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 197 215 226 305 252 951 352 932 386 734 08;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 197 215 226 305 252 951 352 932 386 734 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 394 430 452 610 505 902 705 864 773 468 16;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 394 430 452 610 505 902 705 864 773 468 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 788 860 905 221 011 805 411 729 546 936 32;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 788 860 905 221 011 805 411 729 546 936 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 577 721 810 442 023 610 823 459 093 872 64;
  • 29) 0.000 000 000 000 000 000 000 000 000 001 577 721 810 442 023 610 823 459 093 872 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 155 443 620 884 047 221 646 918 187 745 28;
  • 30) 0.000 000 000 000 000 000 000 000 000 003 155 443 620 884 047 221 646 918 187 745 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 006 310 887 241 768 094 443 293 836 375 490 56;
  • 31) 0.000 000 000 000 000 000 000 000 000 006 310 887 241 768 094 443 293 836 375 490 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 012 621 774 483 536 188 886 587 672 750 981 12;
  • 32) 0.000 000 000 000 000 000 000 000 000 012 621 774 483 536 188 886 587 672 750 981 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 025 243 548 967 072 377 773 175 345 501 962 24;
  • 33) 0.000 000 000 000 000 000 000 000 000 025 243 548 967 072 377 773 175 345 501 962 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 050 487 097 934 144 755 546 350 691 003 924 48;
  • 34) 0.000 000 000 000 000 000 000 000 000 050 487 097 934 144 755 546 350 691 003 924 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 100 974 195 868 289 511 092 701 382 007 848 96;
  • 35) 0.000 000 000 000 000 000 000 000 000 100 974 195 868 289 511 092 701 382 007 848 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 201 948 391 736 579 022 185 402 764 015 697 92;
  • 36) 0.000 000 000 000 000 000 000 000 000 201 948 391 736 579 022 185 402 764 015 697 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 403 896 783 473 158 044 370 805 528 031 395 84;
  • 37) 0.000 000 000 000 000 000 000 000 000 403 896 783 473 158 044 370 805 528 031 395 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 807 793 566 946 316 088 741 611 056 062 791 68;
  • 38) 0.000 000 000 000 000 000 000 000 000 807 793 566 946 316 088 741 611 056 062 791 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 615 587 133 892 632 177 483 222 112 125 583 36;
  • 39) 0.000 000 000 000 000 000 000 000 001 615 587 133 892 632 177 483 222 112 125 583 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 003 231 174 267 785 264 354 966 444 224 251 166 72;
  • 40) 0.000 000 000 000 000 000 000 000 003 231 174 267 785 264 354 966 444 224 251 166 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 006 462 348 535 570 528 709 932 888 448 502 333 44;
  • 41) 0.000 000 000 000 000 000 000 000 006 462 348 535 570 528 709 932 888 448 502 333 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 012 924 697 071 141 057 419 865 776 897 004 666 88;
  • 42) 0.000 000 000 000 000 000 000 000 012 924 697 071 141 057 419 865 776 897 004 666 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 025 849 394 142 282 114 839 731 553 794 009 333 76;
  • 43) 0.000 000 000 000 000 000 000 000 025 849 394 142 282 114 839 731 553 794 009 333 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 051 698 788 284 564 229 679 463 107 588 018 667 52;
  • 44) 0.000 000 000 000 000 000 000 000 051 698 788 284 564 229 679 463 107 588 018 667 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 103 397 576 569 128 459 358 926 215 176 037 335 04;
  • 45) 0.000 000 000 000 000 000 000 000 103 397 576 569 128 459 358 926 215 176 037 335 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 206 795 153 138 256 918 717 852 430 352 074 670 08;
  • 46) 0.000 000 000 000 000 000 000 000 206 795 153 138 256 918 717 852 430 352 074 670 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 413 590 306 276 513 837 435 704 860 704 149 340 16;
  • 47) 0.000 000 000 000 000 000 000 000 413 590 306 276 513 837 435 704 860 704 149 340 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 827 180 612 553 027 674 871 409 721 408 298 680 32;
  • 48) 0.000 000 000 000 000 000 000 000 827 180 612 553 027 674 871 409 721 408 298 680 32 × 2 = 0 + 0.000 000 000 000 000 000 000 001 654 361 225 106 055 349 742 819 442 816 597 360 64;
  • 49) 0.000 000 000 000 000 000 000 001 654 361 225 106 055 349 742 819 442 816 597 360 64 × 2 = 0 + 0.000 000 000 000 000 000 000 003 308 722 450 212 110 699 485 638 885 633 194 721 28;
  • 50) 0.000 000 000 000 000 000 000 003 308 722 450 212 110 699 485 638 885 633 194 721 28 × 2 = 0 + 0.000 000 000 000 000 000 000 006 617 444 900 424 221 398 971 277 771 266 389 442 56;
  • 51) 0.000 000 000 000 000 000 000 006 617 444 900 424 221 398 971 277 771 266 389 442 56 × 2 = 0 + 0.000 000 000 000 000 000 000 013 234 889 800 848 442 797 942 555 542 532 778 885 12;
  • 52) 0.000 000 000 000 000 000 000 013 234 889 800 848 442 797 942 555 542 532 778 885 12 × 2 = 0 + 0.000 000 000 000 000 000 000 026 469 779 601 696 885 595 885 111 085 065 557 770 24;
  • 53) 0.000 000 000 000 000 000 000 026 469 779 601 696 885 595 885 111 085 065 557 770 24 × 2 = 0 + 0.000 000 000 000 000 000 000 052 939 559 203 393 771 191 770 222 170 131 115 540 48;
  • 54) 0.000 000 000 000 000 000 000 052 939 559 203 393 771 191 770 222 170 131 115 540 48 × 2 = 0 + 0.000 000 000 000 000 000 000 105 879 118 406 787 542 383 540 444 340 262 231 080 96;
  • 55) 0.000 000 000 000 000 000 000 105 879 118 406 787 542 383 540 444 340 262 231 080 96 × 2 = 0 + 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 888 680 524 462 161 92;
  • 56) 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 888 680 524 462 161 92 × 2 = 0 + 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 777 361 048 924 323 84;
  • 57) 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 777 361 048 924 323 84 × 2 = 0 + 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 323 554 722 097 848 647 68;
  • 58) 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 323 554 722 097 848 647 68 × 2 = 0 + 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 647 109 444 195 697 295 36;
  • 59) 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 647 109 444 195 697 295 36 × 2 = 0 + 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 294 218 888 391 394 590 72;
  • 60) 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 294 218 888 391 394 590 72 × 2 = 0 + 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 588 437 776 782 789 181 44;
  • 61) 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 588 437 776 782 789 181 44 × 2 = 0 + 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 176 875 553 565 578 362 88;
  • 62) 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 176 875 553 565 578 362 88 × 2 = 0 + 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 353 751 107 131 156 725 76;
  • 63) 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 353 751 107 131 156 725 76 × 2 = 0 + 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 707 502 214 262 313 451 52;
  • 64) 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 707 502 214 262 313 451 52 × 2 = 0 + 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 415 004 428 524 626 903 04;
  • 65) 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 415 004 428 524 626 903 04 × 2 = 0 + 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 830 008 857 049 253 806 08;
  • 66) 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 830 008 857 049 253 806 08 × 2 = 0 + 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 660 017 714 098 507 612 16;
  • 67) 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 660 017 714 098 507 612 16 × 2 = 0 + 0.000 000 000 000 000 000 867 361 737 988 403 547 205 963 320 035 428 197 015 224 32;
  • 68) 0.000 000 000 000 000 000 867 361 737 988 403 547 205 963 320 035 428 197 015 224 32 × 2 = 0 + 0.000 000 000 000 000 001 734 723 475 976 807 094 411 926 640 070 856 394 030 448 64;
  • 69) 0.000 000 000 000 000 001 734 723 475 976 807 094 411 926 640 070 856 394 030 448 64 × 2 = 0 + 0.000 000 000 000 000 003 469 446 951 953 614 188 823 853 280 141 712 788 060 897 28;
  • 70) 0.000 000 000 000 000 003 469 446 951 953 614 188 823 853 280 141 712 788 060 897 28 × 2 = 0 + 0.000 000 000 000 000 006 938 893 903 907 228 377 647 706 560 283 425 576 121 794 56;
  • 71) 0.000 000 000 000 000 006 938 893 903 907 228 377 647 706 560 283 425 576 121 794 56 × 2 = 0 + 0.000 000 000 000 000 013 877 787 807 814 456 755 295 413 120 566 851 152 243 589 12;
  • 72) 0.000 000 000 000 000 013 877 787 807 814 456 755 295 413 120 566 851 152 243 589 12 × 2 = 0 + 0.000 000 000 000 000 027 755 575 615 628 913 510 590 826 241 133 702 304 487 178 24;
  • 73) 0.000 000 000 000 000 027 755 575 615 628 913 510 590 826 241 133 702 304 487 178 24 × 2 = 0 + 0.000 000 000 000 000 055 511 151 231 257 827 021 181 652 482 267 404 608 974 356 48;
  • 74) 0.000 000 000 000 000 055 511 151 231 257 827 021 181 652 482 267 404 608 974 356 48 × 2 = 0 + 0.000 000 000 000 000 111 022 302 462 515 654 042 363 304 964 534 809 217 948 712 96;
  • 75) 0.000 000 000 000 000 111 022 302 462 515 654 042 363 304 964 534 809 217 948 712 96 × 2 = 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 609 929 069 618 435 897 425 92;
  • 76) 0.000 000 000 000 000 222 044 604 925 031 308 084 726 609 929 069 618 435 897 425 92 × 2 = 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 453 219 858 139 236 871 794 851 84;
  • 77) 0.000 000 000 000 000 444 089 209 850 062 616 169 453 219 858 139 236 871 794 851 84 × 2 = 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 906 439 716 278 473 743 589 703 68;
  • 78) 0.000 000 000 000 000 888 178 419 700 125 232 338 906 439 716 278 473 743 589 703 68 × 2 = 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 812 879 432 556 947 487 179 407 36;
  • 79) 0.000 000 000 000 001 776 356 839 400 250 464 677 812 879 432 556 947 487 179 407 36 × 2 = 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 625 758 865 113 894 974 358 814 72;
  • 80) 0.000 000 000 000 003 552 713 678 800 500 929 355 625 758 865 113 894 974 358 814 72 × 2 = 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 251 517 730 227 789 948 717 629 44;
  • 81) 0.000 000 000 000 007 105 427 357 601 001 858 711 251 517 730 227 789 948 717 629 44 × 2 = 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 503 035 460 455 579 897 435 258 88;
  • 82) 0.000 000 000 000 014 210 854 715 202 003 717 422 503 035 460 455 579 897 435 258 88 × 2 = 0 + 0.000 000 000 000 028 421 709 430 404 007 434 845 006 070 920 911 159 794 870 517 76;
  • 83) 0.000 000 000 000 028 421 709 430 404 007 434 845 006 070 920 911 159 794 870 517 76 × 2 = 0 + 0.000 000 000 000 056 843 418 860 808 014 869 690 012 141 841 822 319 589 741 035 52;
  • 84) 0.000 000 000 000 056 843 418 860 808 014 869 690 012 141 841 822 319 589 741 035 52 × 2 = 0 + 0.000 000 000 000 113 686 837 721 616 029 739 380 024 283 683 644 639 179 482 071 04;
  • 85) 0.000 000 000 000 113 686 837 721 616 029 739 380 024 283 683 644 639 179 482 071 04 × 2 = 0 + 0.000 000 000 000 227 373 675 443 232 059 478 760 048 567 367 289 278 358 964 142 08;
  • 86) 0.000 000 000 000 227 373 675 443 232 059 478 760 048 567 367 289 278 358 964 142 08 × 2 = 0 + 0.000 000 000 000 454 747 350 886 464 118 957 520 097 134 734 578 556 717 928 284 16;
  • 87) 0.000 000 000 000 454 747 350 886 464 118 957 520 097 134 734 578 556 717 928 284 16 × 2 = 0 + 0.000 000 000 000 909 494 701 772 928 237 915 040 194 269 469 157 113 435 856 568 32;
  • 88) 0.000 000 000 000 909 494 701 772 928 237 915 040 194 269 469 157 113 435 856 568 32 × 2 = 0 + 0.000 000 000 001 818 989 403 545 856 475 830 080 388 538 938 314 226 871 713 136 64;
  • 89) 0.000 000 000 001 818 989 403 545 856 475 830 080 388 538 938 314 226 871 713 136 64 × 2 = 0 + 0.000 000 000 003 637 978 807 091 712 951 660 160 777 077 876 628 453 743 426 273 28;
  • 90) 0.000 000 000 003 637 978 807 091 712 951 660 160 777 077 876 628 453 743 426 273 28 × 2 = 0 + 0.000 000 000 007 275 957 614 183 425 903 320 321 554 155 753 256 907 486 852 546 56;
  • 91) 0.000 000 000 007 275 957 614 183 425 903 320 321 554 155 753 256 907 486 852 546 56 × 2 = 0 + 0.000 000 000 014 551 915 228 366 851 806 640 643 108 311 506 513 814 973 705 093 12;
  • 92) 0.000 000 000 014 551 915 228 366 851 806 640 643 108 311 506 513 814 973 705 093 12 × 2 = 0 + 0.000 000 000 029 103 830 456 733 703 613 281 286 216 623 013 027 629 947 410 186 24;
  • 93) 0.000 000 000 029 103 830 456 733 703 613 281 286 216 623 013 027 629 947 410 186 24 × 2 = 0 + 0.000 000 000 058 207 660 913 467 407 226 562 572 433 246 026 055 259 894 820 372 48;
  • 94) 0.000 000 000 058 207 660 913 467 407 226 562 572 433 246 026 055 259 894 820 372 48 × 2 = 0 + 0.000 000 000 116 415 321 826 934 814 453 125 144 866 492 052 110 519 789 640 744 96;
  • 95) 0.000 000 000 116 415 321 826 934 814 453 125 144 866 492 052 110 519 789 640 744 96 × 2 = 0 + 0.000 000 000 232 830 643 653 869 628 906 250 289 732 984 104 221 039 579 281 489 92;
  • 96) 0.000 000 000 232 830 643 653 869 628 906 250 289 732 984 104 221 039 579 281 489 92 × 2 = 0 + 0.000 000 000 465 661 287 307 739 257 812 500 579 465 968 208 442 079 158 562 979 84;
  • 97) 0.000 000 000 465 661 287 307 739 257 812 500 579 465 968 208 442 079 158 562 979 84 × 2 = 0 + 0.000 000 000 931 322 574 615 478 515 625 001 158 931 936 416 884 158 317 125 959 68;
  • 98) 0.000 000 000 931 322 574 615 478 515 625 001 158 931 936 416 884 158 317 125 959 68 × 2 = 0 + 0.000 000 001 862 645 149 230 957 031 250 002 317 863 872 833 768 316 634 251 919 36;
  • 99) 0.000 000 001 862 645 149 230 957 031 250 002 317 863 872 833 768 316 634 251 919 36 × 2 = 0 + 0.000 000 003 725 290 298 461 914 062 500 004 635 727 745 667 536 633 268 503 838 72;
  • 100) 0.000 000 003 725 290 298 461 914 062 500 004 635 727 745 667 536 633 268 503 838 72 × 2 = 0 + 0.000 000 007 450 580 596 923 828 125 000 009 271 455 491 335 073 266 537 007 677 44;
  • 101) 0.000 000 007 450 580 596 923 828 125 000 009 271 455 491 335 073 266 537 007 677 44 × 2 = 0 + 0.000 000 014 901 161 193 847 656 250 000 018 542 910 982 670 146 533 074 015 354 88;
  • 102) 0.000 000 014 901 161 193 847 656 250 000 018 542 910 982 670 146 533 074 015 354 88 × 2 = 0 + 0.000 000 029 802 322 387 695 312 500 000 037 085 821 965 340 293 066 148 030 709 76;
  • 103) 0.000 000 029 802 322 387 695 312 500 000 037 085 821 965 340 293 066 148 030 709 76 × 2 = 0 + 0.000 000 059 604 644 775 390 625 000 000 074 171 643 930 680 586 132 296 061 419 52;
  • 104) 0.000 000 059 604 644 775 390 625 000 000 074 171 643 930 680 586 132 296 061 419 52 × 2 = 0 + 0.000 000 119 209 289 550 781 250 000 000 148 343 287 861 361 172 264 592 122 839 04;
  • 105) 0.000 000 119 209 289 550 781 250 000 000 148 343 287 861 361 172 264 592 122 839 04 × 2 = 0 + 0.000 000 238 418 579 101 562 500 000 000 296 686 575 722 722 344 529 184 245 678 08;
  • 106) 0.000 000 238 418 579 101 562 500 000 000 296 686 575 722 722 344 529 184 245 678 08 × 2 = 0 + 0.000 000 476 837 158 203 125 000 000 000 593 373 151 445 444 689 058 368 491 356 16;
  • 107) 0.000 000 476 837 158 203 125 000 000 000 593 373 151 445 444 689 058 368 491 356 16 × 2 = 0 + 0.000 000 953 674 316 406 250 000 000 001 186 746 302 890 889 378 116 736 982 712 32;
  • 108) 0.000 000 953 674 316 406 250 000 000 001 186 746 302 890 889 378 116 736 982 712 32 × 2 = 0 + 0.000 001 907 348 632 812 500 000 000 002 373 492 605 781 778 756 233 473 965 424 64;
  • 109) 0.000 001 907 348 632 812 500 000 000 002 373 492 605 781 778 756 233 473 965 424 64 × 2 = 0 + 0.000 003 814 697 265 625 000 000 000 004 746 985 211 563 557 512 466 947 930 849 28;
  • 110) 0.000 003 814 697 265 625 000 000 000 004 746 985 211 563 557 512 466 947 930 849 28 × 2 = 0 + 0.000 007 629 394 531 250 000 000 000 009 493 970 423 127 115 024 933 895 861 698 56;
  • 111) 0.000 007 629 394 531 250 000 000 000 009 493 970 423 127 115 024 933 895 861 698 56 × 2 = 0 + 0.000 015 258 789 062 500 000 000 000 018 987 940 846 254 230 049 867 791 723 397 12;
  • 112) 0.000 015 258 789 062 500 000 000 000 018 987 940 846 254 230 049 867 791 723 397 12 × 2 = 0 + 0.000 030 517 578 125 000 000 000 000 037 975 881 692 508 460 099 735 583 446 794 24;
  • 113) 0.000 030 517 578 125 000 000 000 000 037 975 881 692 508 460 099 735 583 446 794 24 × 2 = 0 + 0.000 061 035 156 250 000 000 000 000 075 951 763 385 016 920 199 471 166 893 588 48;
  • 114) 0.000 061 035 156 250 000 000 000 000 075 951 763 385 016 920 199 471 166 893 588 48 × 2 = 0 + 0.000 122 070 312 500 000 000 000 000 151 903 526 770 033 840 398 942 333 787 176 96;
  • 115) 0.000 122 070 312 500 000 000 000 000 151 903 526 770 033 840 398 942 333 787 176 96 × 2 = 0 + 0.000 244 140 625 000 000 000 000 000 303 807 053 540 067 680 797 884 667 574 353 92;
  • 116) 0.000 244 140 625 000 000 000 000 000 303 807 053 540 067 680 797 884 667 574 353 92 × 2 = 0 + 0.000 488 281 250 000 000 000 000 000 607 614 107 080 135 361 595 769 335 148 707 84;
  • 117) 0.000 488 281 250 000 000 000 000 000 607 614 107 080 135 361 595 769 335 148 707 84 × 2 = 0 + 0.000 976 562 500 000 000 000 000 001 215 228 214 160 270 723 191 538 670 297 415 68;
  • 118) 0.000 976 562 500 000 000 000 000 001 215 228 214 160 270 723 191 538 670 297 415 68 × 2 = 0 + 0.001 953 125 000 000 000 000 000 002 430 456 428 320 541 446 383 077 340 594 831 36;
  • 119) 0.001 953 125 000 000 000 000 000 002 430 456 428 320 541 446 383 077 340 594 831 36 × 2 = 0 + 0.003 906 250 000 000 000 000 000 004 860 912 856 641 082 892 766 154 681 189 662 72;
  • 120) 0.003 906 250 000 000 000 000 000 004 860 912 856 641 082 892 766 154 681 189 662 72 × 2 = 0 + 0.007 812 500 000 000 000 000 000 009 721 825 713 282 165 785 532 309 362 379 325 44;
  • 121) 0.007 812 500 000 000 000 000 000 009 721 825 713 282 165 785 532 309 362 379 325 44 × 2 = 0 + 0.015 625 000 000 000 000 000 000 019 443 651 426 564 331 571 064 618 724 758 650 88;
  • 122) 0.015 625 000 000 000 000 000 000 019 443 651 426 564 331 571 064 618 724 758 650 88 × 2 = 0 + 0.031 250 000 000 000 000 000 000 038 887 302 853 128 663 142 129 237 449 517 301 76;
  • 123) 0.031 250 000 000 000 000 000 000 038 887 302 853 128 663 142 129 237 449 517 301 76 × 2 = 0 + 0.062 500 000 000 000 000 000 000 077 774 605 706 257 326 284 258 474 899 034 603 52;
  • 124) 0.062 500 000 000 000 000 000 000 077 774 605 706 257 326 284 258 474 899 034 603 52 × 2 = 0 + 0.125 000 000 000 000 000 000 000 155 549 211 412 514 652 568 516 949 798 069 207 04;
  • 125) 0.125 000 000 000 000 000 000 000 155 549 211 412 514 652 568 516 949 798 069 207 04 × 2 = 0 + 0.250 000 000 000 000 000 000 000 311 098 422 825 029 305 137 033 899 596 138 414 08;
  • 126) 0.250 000 000 000 000 000 000 000 311 098 422 825 029 305 137 033 899 596 138 414 08 × 2 = 0 + 0.500 000 000 000 000 000 000 000 622 196 845 650 058 610 274 067 799 192 276 828 16;
  • 127) 0.500 000 000 000 000 000 000 000 622 196 845 650 058 610 274 067 799 192 276 828 16 × 2 = 1 + 0.000 000 000 000 000 000 000 001 244 393 691 300 117 220 548 135 598 384 553 656 32;
  • 128) 0.000 000 000 000 000 000 000 001 244 393 691 300 117 220 548 135 598 384 553 656 32 × 2 = 0 + 0.000 000 000 000 000 000 000 002 488 787 382 600 234 441 096 271 196 769 107 312 64;
  • 129) 0.000 000 000 000 000 000 000 002 488 787 382 600 234 441 096 271 196 769 107 312 64 × 2 = 0 + 0.000 000 000 000 000 000 000 004 977 574 765 200 468 882 192 542 393 538 214 625 28;
  • 130) 0.000 000 000 000 000 000 000 004 977 574 765 200 468 882 192 542 393 538 214 625 28 × 2 = 0 + 0.000 000 000 000 000 000 000 009 955 149 530 400 937 764 385 084 787 076 429 250 56;
  • 131) 0.000 000 000 000 000 000 000 009 955 149 530 400 937 764 385 084 787 076 429 250 56 × 2 = 0 + 0.000 000 000 000 000 000 000 019 910 299 060 801 875 528 770 169 574 152 858 501 12;
  • 132) 0.000 000 000 000 000 000 000 019 910 299 060 801 875 528 770 169 574 152 858 501 12 × 2 = 0 + 0.000 000 000 000 000 000 000 039 820 598 121 603 751 057 540 339 148 305 717 002 24;
  • 133) 0.000 000 000 000 000 000 000 039 820 598 121 603 751 057 540 339 148 305 717 002 24 × 2 = 0 + 0.000 000 000 000 000 000 000 079 641 196 243 207 502 115 080 678 296 611 434 004 48;
  • 134) 0.000 000 000 000 000 000 000 079 641 196 243 207 502 115 080 678 296 611 434 004 48 × 2 = 0 + 0.000 000 000 000 000 000 000 159 282 392 486 415 004 230 161 356 593 222 868 008 96;
  • 135) 0.000 000 000 000 000 000 000 159 282 392 486 415 004 230 161 356 593 222 868 008 96 × 2 = 0 + 0.000 000 000 000 000 000 000 318 564 784 972 830 008 460 322 713 186 445 736 017 92;
  • 136) 0.000 000 000 000 000 000 000 318 564 784 972 830 008 460 322 713 186 445 736 017 92 × 2 = 0 + 0.000 000 000 000 000 000 000 637 129 569 945 660 016 920 645 426 372 891 472 035 84;
  • 137) 0.000 000 000 000 000 000 000 637 129 569 945 660 016 920 645 426 372 891 472 035 84 × 2 = 0 + 0.000 000 000 000 000 000 001 274 259 139 891 320 033 841 290 852 745 782 944 071 68;
  • 138) 0.000 000 000 000 000 000 001 274 259 139 891 320 033 841 290 852 745 782 944 071 68 × 2 = 0 + 0.000 000 000 000 000 000 002 548 518 279 782 640 067 682 581 705 491 565 888 143 36;
  • 139) 0.000 000 000 000 000 000 002 548 518 279 782 640 067 682 581 705 491 565 888 143 36 × 2 = 0 + 0.000 000 000 000 000 000 005 097 036 559 565 280 135 365 163 410 983 131 776 286 72;
  • 140) 0.000 000 000 000 000 000 005 097 036 559 565 280 135 365 163 410 983 131 776 286 72 × 2 = 0 + 0.000 000 000 000 000 000 010 194 073 119 130 560 270 730 326 821 966 263 552 573 44;
  • 141) 0.000 000 000 000 000 000 010 194 073 119 130 560 270 730 326 821 966 263 552 573 44 × 2 = 0 + 0.000 000 000 000 000 000 020 388 146 238 261 120 541 460 653 643 932 527 105 146 88;
  • 142) 0.000 000 000 000 000 000 020 388 146 238 261 120 541 460 653 643 932 527 105 146 88 × 2 = 0 + 0.000 000 000 000 000 000 040 776 292 476 522 241 082 921 307 287 865 054 210 293 76;
  • 143) 0.000 000 000 000 000 000 040 776 292 476 522 241 082 921 307 287 865 054 210 293 76 × 2 = 0 + 0.000 000 000 000 000 000 081 552 584 953 044 482 165 842 614 575 730 108 420 587 52;
  • 144) 0.000 000 000 000 000 000 081 552 584 953 044 482 165 842 614 575 730 108 420 587 52 × 2 = 0 + 0.000 000 000 000 000 000 163 105 169 906 088 964 331 685 229 151 460 216 841 175 04;
  • 145) 0.000 000 000 000 000 000 163 105 169 906 088 964 331 685 229 151 460 216 841 175 04 × 2 = 0 + 0.000 000 000 000 000 000 326 210 339 812 177 928 663 370 458 302 920 433 682 350 08;
  • 146) 0.000 000 000 000 000 000 326 210 339 812 177 928 663 370 458 302 920 433 682 350 08 × 2 = 0 + 0.000 000 000 000 000 000 652 420 679 624 355 857 326 740 916 605 840 867 364 700 16;
  • 147) 0.000 000 000 000 000 000 652 420 679 624 355 857 326 740 916 605 840 867 364 700 16 × 2 = 0 + 0.000 000 000 000 000 001 304 841 359 248 711 714 653 481 833 211 681 734 729 400 32;
  • 148) 0.000 000 000 000 000 001 304 841 359 248 711 714 653 481 833 211 681 734 729 400 32 × 2 = 0 + 0.000 000 000 000 000 002 609 682 718 497 423 429 306 963 666 423 363 469 458 800 64;
  • 149) 0.000 000 000 000 000 002 609 682 718 497 423 429 306 963 666 423 363 469 458 800 64 × 2 = 0 + 0.000 000 000 000 000 005 219 365 436 994 846 858 613 927 332 846 726 938 917 601 28;
  • 150) 0.000 000 000 000 000 005 219 365 436 994 846 858 613 927 332 846 726 938 917 601 28 × 2 = 0 + 0.000 000 000 000 000 010 438 730 873 989 693 717 227 854 665 693 453 877 835 202 56;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 00(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 00(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 00(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 00(2) × 20 =


1.0000 0000 0000 0000 0000 000(2) × 2-127


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.0000 0000 0000 0000 0000 000


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-127 + 2(8-1) - 1 =


(-127 + 127)(10) =


0(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


0(10) =


0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 000 0000 0000 0000 0000 0000 =


000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 69 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -129.535 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 39.65 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 801 475 037 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 2.22 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number -10.1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 4 868 180 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 34.015 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 546.555 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number -276.58 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
Number 1 057 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 21 17:00 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111