32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 943 508 222 875 079 687 36;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 943 508 222 875 079 687 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 887 016 445 750 159 374 72;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 887 016 445 750 159 374 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 774 032 891 500 318 749 44;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 774 032 891 500 318 749 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 548 065 783 000 637 498 88;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 548 065 783 000 637 498 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 188 079 096 131 566 001 274 997 76;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 188 079 096 131 566 001 274 997 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 376 158 192 263 132 002 549 995 52;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 376 158 192 263 132 002 549 995 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 752 316 384 526 264 005 099 991 04;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 752 316 384 526 264 005 099 991 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 504 632 769 052 528 010 199 982 08;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 001 504 632 769 052 528 010 199 982 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 009 265 538 105 056 020 399 964 16;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 003 009 265 538 105 056 020 399 964 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 006 018 531 076 210 112 040 799 928 32;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 006 018 531 076 210 112 040 799 928 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 012 037 062 152 420 224 081 599 856 64;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 012 037 062 152 420 224 081 599 856 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 024 074 124 304 840 448 163 199 713 28;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 024 074 124 304 840 448 163 199 713 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 048 148 248 609 680 896 326 399 426 56;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 048 148 248 609 680 896 326 399 426 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 096 296 497 219 361 792 652 798 853 12;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 096 296 497 219 361 792 652 798 853 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 192 592 994 438 723 585 305 597 706 24;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 192 592 994 438 723 585 305 597 706 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 385 185 988 877 447 170 611 195 412 48;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 385 185 988 877 447 170 611 195 412 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 770 371 977 754 894 341 222 390 824 96;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 770 371 977 754 894 341 222 390 824 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 540 743 955 509 788 682 444 781 649 92;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 001 540 743 955 509 788 682 444 781 649 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 081 487 911 019 577 364 889 563 299 84;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 003 081 487 911 019 577 364 889 563 299 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 006 162 975 822 039 154 729 779 126 599 68;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 006 162 975 822 039 154 729 779 126 599 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 012 325 951 644 078 309 459 558 253 199 36;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 012 325 951 644 078 309 459 558 253 199 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 024 651 903 288 156 618 919 116 506 398 72;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 024 651 903 288 156 618 919 116 506 398 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 049 303 806 576 313 237 838 233 012 797 44;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 049 303 806 576 313 237 838 233 012 797 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 098 607 613 152 626 475 676 466 025 594 88;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 098 607 613 152 626 475 676 466 025 594 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 197 215 226 305 252 951 352 932 051 189 76;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 197 215 226 305 252 951 352 932 051 189 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 394 430 452 610 505 902 705 864 102 379 52;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 394 430 452 610 505 902 705 864 102 379 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 788 860 905 221 011 805 411 728 204 759 04;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 788 860 905 221 011 805 411 728 204 759 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 577 721 810 442 023 610 823 456 409 518 08;
  • 29) 0.000 000 000 000 000 000 000 000 000 001 577 721 810 442 023 610 823 456 409 518 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 155 443 620 884 047 221 646 912 819 036 16;
  • 30) 0.000 000 000 000 000 000 000 000 000 003 155 443 620 884 047 221 646 912 819 036 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 006 310 887 241 768 094 443 293 825 638 072 32;
  • 31) 0.000 000 000 000 000 000 000 000 000 006 310 887 241 768 094 443 293 825 638 072 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 012 621 774 483 536 188 886 587 651 276 144 64;
  • 32) 0.000 000 000 000 000 000 000 000 000 012 621 774 483 536 188 886 587 651 276 144 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 025 243 548 967 072 377 773 175 302 552 289 28;
  • 33) 0.000 000 000 000 000 000 000 000 000 025 243 548 967 072 377 773 175 302 552 289 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 050 487 097 934 144 755 546 350 605 104 578 56;
  • 34) 0.000 000 000 000 000 000 000 000 000 050 487 097 934 144 755 546 350 605 104 578 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 100 974 195 868 289 511 092 701 210 209 157 12;
  • 35) 0.000 000 000 000 000 000 000 000 000 100 974 195 868 289 511 092 701 210 209 157 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 201 948 391 736 579 022 185 402 420 418 314 24;
  • 36) 0.000 000 000 000 000 000 000 000 000 201 948 391 736 579 022 185 402 420 418 314 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 403 896 783 473 158 044 370 804 840 836 628 48;
  • 37) 0.000 000 000 000 000 000 000 000 000 403 896 783 473 158 044 370 804 840 836 628 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 807 793 566 946 316 088 741 609 681 673 256 96;
  • 38) 0.000 000 000 000 000 000 000 000 000 807 793 566 946 316 088 741 609 681 673 256 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 615 587 133 892 632 177 483 219 363 346 513 92;
  • 39) 0.000 000 000 000 000 000 000 000 001 615 587 133 892 632 177 483 219 363 346 513 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 003 231 174 267 785 264 354 966 438 726 693 027 84;
  • 40) 0.000 000 000 000 000 000 000 000 003 231 174 267 785 264 354 966 438 726 693 027 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 006 462 348 535 570 528 709 932 877 453 386 055 68;
  • 41) 0.000 000 000 000 000 000 000 000 006 462 348 535 570 528 709 932 877 453 386 055 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 012 924 697 071 141 057 419 865 754 906 772 111 36;
  • 42) 0.000 000 000 000 000 000 000 000 012 924 697 071 141 057 419 865 754 906 772 111 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 025 849 394 142 282 114 839 731 509 813 544 222 72;
  • 43) 0.000 000 000 000 000 000 000 000 025 849 394 142 282 114 839 731 509 813 544 222 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 051 698 788 284 564 229 679 463 019 627 088 445 44;
  • 44) 0.000 000 000 000 000 000 000 000 051 698 788 284 564 229 679 463 019 627 088 445 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 103 397 576 569 128 459 358 926 039 254 176 890 88;
  • 45) 0.000 000 000 000 000 000 000 000 103 397 576 569 128 459 358 926 039 254 176 890 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 206 795 153 138 256 918 717 852 078 508 353 781 76;
  • 46) 0.000 000 000 000 000 000 000 000 206 795 153 138 256 918 717 852 078 508 353 781 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 413 590 306 276 513 837 435 704 157 016 707 563 52;
  • 47) 0.000 000 000 000 000 000 000 000 413 590 306 276 513 837 435 704 157 016 707 563 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 827 180 612 553 027 674 871 408 314 033 415 127 04;
  • 48) 0.000 000 000 000 000 000 000 000 827 180 612 553 027 674 871 408 314 033 415 127 04 × 2 = 0 + 0.000 000 000 000 000 000 000 001 654 361 225 106 055 349 742 816 628 066 830 254 08;
  • 49) 0.000 000 000 000 000 000 000 001 654 361 225 106 055 349 742 816 628 066 830 254 08 × 2 = 0 + 0.000 000 000 000 000 000 000 003 308 722 450 212 110 699 485 633 256 133 660 508 16;
  • 50) 0.000 000 000 000 000 000 000 003 308 722 450 212 110 699 485 633 256 133 660 508 16 × 2 = 0 + 0.000 000 000 000 000 000 000 006 617 444 900 424 221 398 971 266 512 267 321 016 32;
  • 51) 0.000 000 000 000 000 000 000 006 617 444 900 424 221 398 971 266 512 267 321 016 32 × 2 = 0 + 0.000 000 000 000 000 000 000 013 234 889 800 848 442 797 942 533 024 534 642 032 64;
  • 52) 0.000 000 000 000 000 000 000 013 234 889 800 848 442 797 942 533 024 534 642 032 64 × 2 = 0 + 0.000 000 000 000 000 000 000 026 469 779 601 696 885 595 885 066 049 069 284 065 28;
  • 53) 0.000 000 000 000 000 000 000 026 469 779 601 696 885 595 885 066 049 069 284 065 28 × 2 = 0 + 0.000 000 000 000 000 000 000 052 939 559 203 393 771 191 770 132 098 138 568 130 56;
  • 54) 0.000 000 000 000 000 000 000 052 939 559 203 393 771 191 770 132 098 138 568 130 56 × 2 = 0 + 0.000 000 000 000 000 000 000 105 879 118 406 787 542 383 540 264 196 277 136 261 12;
  • 55) 0.000 000 000 000 000 000 000 105 879 118 406 787 542 383 540 264 196 277 136 261 12 × 2 = 0 + 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 528 392 554 272 522 24;
  • 56) 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 528 392 554 272 522 24 × 2 = 0 + 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 056 785 108 545 044 48;
  • 57) 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 056 785 108 545 044 48 × 2 = 0 + 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 113 570 217 090 088 96;
  • 58) 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 113 570 217 090 088 96 × 2 = 0 + 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 644 227 140 434 180 177 92;
  • 59) 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 644 227 140 434 180 177 92 × 2 = 0 + 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 288 454 280 868 360 355 84;
  • 60) 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 288 454 280 868 360 355 84 × 2 = 0 + 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 576 908 561 736 720 711 68;
  • 61) 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 576 908 561 736 720 711 68 × 2 = 0 + 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 153 817 123 473 441 423 36;
  • 62) 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 153 817 123 473 441 423 36 × 2 = 0 + 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 307 634 246 946 882 846 72;
  • 63) 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 307 634 246 946 882 846 72 × 2 = 0 + 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 615 268 493 893 765 693 44;
  • 64) 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 615 268 493 893 765 693 44 × 2 = 0 + 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 230 536 987 787 531 386 88;
  • 65) 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 230 536 987 787 531 386 88 × 2 = 0 + 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 461 073 975 575 062 773 76;
  • 66) 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 461 073 975 575 062 773 76 × 2 = 0 + 0.000 000 000 000 000 000 433 680 868 994 201 773 602 980 922 147 951 150 125 547 52;
  • 67) 0.000 000 000 000 000 000 433 680 868 994 201 773 602 980 922 147 951 150 125 547 52 × 2 = 0 + 0.000 000 000 000 000 000 867 361 737 988 403 547 205 961 844 295 902 300 251 095 04;
  • 68) 0.000 000 000 000 000 000 867 361 737 988 403 547 205 961 844 295 902 300 251 095 04 × 2 = 0 + 0.000 000 000 000 000 001 734 723 475 976 807 094 411 923 688 591 804 600 502 190 08;
  • 69) 0.000 000 000 000 000 001 734 723 475 976 807 094 411 923 688 591 804 600 502 190 08 × 2 = 0 + 0.000 000 000 000 000 003 469 446 951 953 614 188 823 847 377 183 609 201 004 380 16;
  • 70) 0.000 000 000 000 000 003 469 446 951 953 614 188 823 847 377 183 609 201 004 380 16 × 2 = 0 + 0.000 000 000 000 000 006 938 893 903 907 228 377 647 694 754 367 218 402 008 760 32;
  • 71) 0.000 000 000 000 000 006 938 893 903 907 228 377 647 694 754 367 218 402 008 760 32 × 2 = 0 + 0.000 000 000 000 000 013 877 787 807 814 456 755 295 389 508 734 436 804 017 520 64;
  • 72) 0.000 000 000 000 000 013 877 787 807 814 456 755 295 389 508 734 436 804 017 520 64 × 2 = 0 + 0.000 000 000 000 000 027 755 575 615 628 913 510 590 779 017 468 873 608 035 041 28;
  • 73) 0.000 000 000 000 000 027 755 575 615 628 913 510 590 779 017 468 873 608 035 041 28 × 2 = 0 + 0.000 000 000 000 000 055 511 151 231 257 827 021 181 558 034 937 747 216 070 082 56;
  • 74) 0.000 000 000 000 000 055 511 151 231 257 827 021 181 558 034 937 747 216 070 082 56 × 2 = 0 + 0.000 000 000 000 000 111 022 302 462 515 654 042 363 116 069 875 494 432 140 165 12;
  • 75) 0.000 000 000 000 000 111 022 302 462 515 654 042 363 116 069 875 494 432 140 165 12 × 2 = 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 232 139 750 988 864 280 330 24;
  • 76) 0.000 000 000 000 000 222 044 604 925 031 308 084 726 232 139 750 988 864 280 330 24 × 2 = 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 464 279 501 977 728 560 660 48;
  • 77) 0.000 000 000 000 000 444 089 209 850 062 616 169 452 464 279 501 977 728 560 660 48 × 2 = 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 904 928 559 003 955 457 121 320 96;
  • 78) 0.000 000 000 000 000 888 178 419 700 125 232 338 904 928 559 003 955 457 121 320 96 × 2 = 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 809 857 118 007 910 914 242 641 92;
  • 79) 0.000 000 000 000 001 776 356 839 400 250 464 677 809 857 118 007 910 914 242 641 92 × 2 = 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 619 714 236 015 821 828 485 283 84;
  • 80) 0.000 000 000 000 003 552 713 678 800 500 929 355 619 714 236 015 821 828 485 283 84 × 2 = 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 239 428 472 031 643 656 970 567 68;
  • 81) 0.000 000 000 000 007 105 427 357 601 001 858 711 239 428 472 031 643 656 970 567 68 × 2 = 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 478 856 944 063 287 313 941 135 36;
  • 82) 0.000 000 000 000 014 210 854 715 202 003 717 422 478 856 944 063 287 313 941 135 36 × 2 = 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 957 713 888 126 574 627 882 270 72;
  • 83) 0.000 000 000 000 028 421 709 430 404 007 434 844 957 713 888 126 574 627 882 270 72 × 2 = 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 915 427 776 253 149 255 764 541 44;
  • 84) 0.000 000 000 000 056 843 418 860 808 014 869 689 915 427 776 253 149 255 764 541 44 × 2 = 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 830 855 552 506 298 511 529 082 88;
  • 85) 0.000 000 000 000 113 686 837 721 616 029 739 379 830 855 552 506 298 511 529 082 88 × 2 = 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 661 711 105 012 597 023 058 165 76;
  • 86) 0.000 000 000 000 227 373 675 443 232 059 478 759 661 711 105 012 597 023 058 165 76 × 2 = 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 323 422 210 025 194 046 116 331 52;
  • 87) 0.000 000 000 000 454 747 350 886 464 118 957 519 323 422 210 025 194 046 116 331 52 × 2 = 0 + 0.000 000 000 000 909 494 701 772 928 237 915 038 646 844 420 050 388 092 232 663 04;
  • 88) 0.000 000 000 000 909 494 701 772 928 237 915 038 646 844 420 050 388 092 232 663 04 × 2 = 0 + 0.000 000 000 001 818 989 403 545 856 475 830 077 293 688 840 100 776 184 465 326 08;
  • 89) 0.000 000 000 001 818 989 403 545 856 475 830 077 293 688 840 100 776 184 465 326 08 × 2 = 0 + 0.000 000 000 003 637 978 807 091 712 951 660 154 587 377 680 201 552 368 930 652 16;
  • 90) 0.000 000 000 003 637 978 807 091 712 951 660 154 587 377 680 201 552 368 930 652 16 × 2 = 0 + 0.000 000 000 007 275 957 614 183 425 903 320 309 174 755 360 403 104 737 861 304 32;
  • 91) 0.000 000 000 007 275 957 614 183 425 903 320 309 174 755 360 403 104 737 861 304 32 × 2 = 0 + 0.000 000 000 014 551 915 228 366 851 806 640 618 349 510 720 806 209 475 722 608 64;
  • 92) 0.000 000 000 014 551 915 228 366 851 806 640 618 349 510 720 806 209 475 722 608 64 × 2 = 0 + 0.000 000 000 029 103 830 456 733 703 613 281 236 699 021 441 612 418 951 445 217 28;
  • 93) 0.000 000 000 029 103 830 456 733 703 613 281 236 699 021 441 612 418 951 445 217 28 × 2 = 0 + 0.000 000 000 058 207 660 913 467 407 226 562 473 398 042 883 224 837 902 890 434 56;
  • 94) 0.000 000 000 058 207 660 913 467 407 226 562 473 398 042 883 224 837 902 890 434 56 × 2 = 0 + 0.000 000 000 116 415 321 826 934 814 453 124 946 796 085 766 449 675 805 780 869 12;
  • 95) 0.000 000 000 116 415 321 826 934 814 453 124 946 796 085 766 449 675 805 780 869 12 × 2 = 0 + 0.000 000 000 232 830 643 653 869 628 906 249 893 592 171 532 899 351 611 561 738 24;
  • 96) 0.000 000 000 232 830 643 653 869 628 906 249 893 592 171 532 899 351 611 561 738 24 × 2 = 0 + 0.000 000 000 465 661 287 307 739 257 812 499 787 184 343 065 798 703 223 123 476 48;
  • 97) 0.000 000 000 465 661 287 307 739 257 812 499 787 184 343 065 798 703 223 123 476 48 × 2 = 0 + 0.000 000 000 931 322 574 615 478 515 624 999 574 368 686 131 597 406 446 246 952 96;
  • 98) 0.000 000 000 931 322 574 615 478 515 624 999 574 368 686 131 597 406 446 246 952 96 × 2 = 0 + 0.000 000 001 862 645 149 230 957 031 249 999 148 737 372 263 194 812 892 493 905 92;
  • 99) 0.000 000 001 862 645 149 230 957 031 249 999 148 737 372 263 194 812 892 493 905 92 × 2 = 0 + 0.000 000 003 725 290 298 461 914 062 499 998 297 474 744 526 389 625 784 987 811 84;
  • 100) 0.000 000 003 725 290 298 461 914 062 499 998 297 474 744 526 389 625 784 987 811 84 × 2 = 0 + 0.000 000 007 450 580 596 923 828 124 999 996 594 949 489 052 779 251 569 975 623 68;
  • 101) 0.000 000 007 450 580 596 923 828 124 999 996 594 949 489 052 779 251 569 975 623 68 × 2 = 0 + 0.000 000 014 901 161 193 847 656 249 999 993 189 898 978 105 558 503 139 951 247 36;
  • 102) 0.000 000 014 901 161 193 847 656 249 999 993 189 898 978 105 558 503 139 951 247 36 × 2 = 0 + 0.000 000 029 802 322 387 695 312 499 999 986 379 797 956 211 117 006 279 902 494 72;
  • 103) 0.000 000 029 802 322 387 695 312 499 999 986 379 797 956 211 117 006 279 902 494 72 × 2 = 0 + 0.000 000 059 604 644 775 390 624 999 999 972 759 595 912 422 234 012 559 804 989 44;
  • 104) 0.000 000 059 604 644 775 390 624 999 999 972 759 595 912 422 234 012 559 804 989 44 × 2 = 0 + 0.000 000 119 209 289 550 781 249 999 999 945 519 191 824 844 468 025 119 609 978 88;
  • 105) 0.000 000 119 209 289 550 781 249 999 999 945 519 191 824 844 468 025 119 609 978 88 × 2 = 0 + 0.000 000 238 418 579 101 562 499 999 999 891 038 383 649 688 936 050 239 219 957 76;
  • 106) 0.000 000 238 418 579 101 562 499 999 999 891 038 383 649 688 936 050 239 219 957 76 × 2 = 0 + 0.000 000 476 837 158 203 124 999 999 999 782 076 767 299 377 872 100 478 439 915 52;
  • 107) 0.000 000 476 837 158 203 124 999 999 999 782 076 767 299 377 872 100 478 439 915 52 × 2 = 0 + 0.000 000 953 674 316 406 249 999 999 999 564 153 534 598 755 744 200 956 879 831 04;
  • 108) 0.000 000 953 674 316 406 249 999 999 999 564 153 534 598 755 744 200 956 879 831 04 × 2 = 0 + 0.000 001 907 348 632 812 499 999 999 999 128 307 069 197 511 488 401 913 759 662 08;
  • 109) 0.000 001 907 348 632 812 499 999 999 999 128 307 069 197 511 488 401 913 759 662 08 × 2 = 0 + 0.000 003 814 697 265 624 999 999 999 998 256 614 138 395 022 976 803 827 519 324 16;
  • 110) 0.000 003 814 697 265 624 999 999 999 998 256 614 138 395 022 976 803 827 519 324 16 × 2 = 0 + 0.000 007 629 394 531 249 999 999 999 996 513 228 276 790 045 953 607 655 038 648 32;
  • 111) 0.000 007 629 394 531 249 999 999 999 996 513 228 276 790 045 953 607 655 038 648 32 × 2 = 0 + 0.000 015 258 789 062 499 999 999 999 993 026 456 553 580 091 907 215 310 077 296 64;
  • 112) 0.000 015 258 789 062 499 999 999 999 993 026 456 553 580 091 907 215 310 077 296 64 × 2 = 0 + 0.000 030 517 578 124 999 999 999 999 986 052 913 107 160 183 814 430 620 154 593 28;
  • 113) 0.000 030 517 578 124 999 999 999 999 986 052 913 107 160 183 814 430 620 154 593 28 × 2 = 0 + 0.000 061 035 156 249 999 999 999 999 972 105 826 214 320 367 628 861 240 309 186 56;
  • 114) 0.000 061 035 156 249 999 999 999 999 972 105 826 214 320 367 628 861 240 309 186 56 × 2 = 0 + 0.000 122 070 312 499 999 999 999 999 944 211 652 428 640 735 257 722 480 618 373 12;
  • 115) 0.000 122 070 312 499 999 999 999 999 944 211 652 428 640 735 257 722 480 618 373 12 × 2 = 0 + 0.000 244 140 624 999 999 999 999 999 888 423 304 857 281 470 515 444 961 236 746 24;
  • 116) 0.000 244 140 624 999 999 999 999 999 888 423 304 857 281 470 515 444 961 236 746 24 × 2 = 0 + 0.000 488 281 249 999 999 999 999 999 776 846 609 714 562 941 030 889 922 473 492 48;
  • 117) 0.000 488 281 249 999 999 999 999 999 776 846 609 714 562 941 030 889 922 473 492 48 × 2 = 0 + 0.000 976 562 499 999 999 999 999 999 553 693 219 429 125 882 061 779 844 946 984 96;
  • 118) 0.000 976 562 499 999 999 999 999 999 553 693 219 429 125 882 061 779 844 946 984 96 × 2 = 0 + 0.001 953 124 999 999 999 999 999 999 107 386 438 858 251 764 123 559 689 893 969 92;
  • 119) 0.001 953 124 999 999 999 999 999 999 107 386 438 858 251 764 123 559 689 893 969 92 × 2 = 0 + 0.003 906 249 999 999 999 999 999 998 214 772 877 716 503 528 247 119 379 787 939 84;
  • 120) 0.003 906 249 999 999 999 999 999 998 214 772 877 716 503 528 247 119 379 787 939 84 × 2 = 0 + 0.007 812 499 999 999 999 999 999 996 429 545 755 433 007 056 494 238 759 575 879 68;
  • 121) 0.007 812 499 999 999 999 999 999 996 429 545 755 433 007 056 494 238 759 575 879 68 × 2 = 0 + 0.015 624 999 999 999 999 999 999 992 859 091 510 866 014 112 988 477 519 151 759 36;
  • 122) 0.015 624 999 999 999 999 999 999 992 859 091 510 866 014 112 988 477 519 151 759 36 × 2 = 0 + 0.031 249 999 999 999 999 999 999 985 718 183 021 732 028 225 976 955 038 303 518 72;
  • 123) 0.031 249 999 999 999 999 999 999 985 718 183 021 732 028 225 976 955 038 303 518 72 × 2 = 0 + 0.062 499 999 999 999 999 999 999 971 436 366 043 464 056 451 953 910 076 607 037 44;
  • 124) 0.062 499 999 999 999 999 999 999 971 436 366 043 464 056 451 953 910 076 607 037 44 × 2 = 0 + 0.124 999 999 999 999 999 999 999 942 872 732 086 928 112 903 907 820 153 214 074 88;
  • 125) 0.124 999 999 999 999 999 999 999 942 872 732 086 928 112 903 907 820 153 214 074 88 × 2 = 0 + 0.249 999 999 999 999 999 999 999 885 745 464 173 856 225 807 815 640 306 428 149 76;
  • 126) 0.249 999 999 999 999 999 999 999 885 745 464 173 856 225 807 815 640 306 428 149 76 × 2 = 0 + 0.499 999 999 999 999 999 999 999 771 490 928 347 712 451 615 631 280 612 856 299 52;
  • 127) 0.499 999 999 999 999 999 999 999 771 490 928 347 712 451 615 631 280 612 856 299 52 × 2 = 0 + 0.999 999 999 999 999 999 999 999 542 981 856 695 424 903 231 262 561 225 712 599 04;
  • 128) 0.999 999 999 999 999 999 999 999 542 981 856 695 424 903 231 262 561 225 712 599 04 × 2 = 1 + 0.999 999 999 999 999 999 999 999 085 963 713 390 849 806 462 525 122 451 425 198 08;
  • 129) 0.999 999 999 999 999 999 999 999 085 963 713 390 849 806 462 525 122 451 425 198 08 × 2 = 1 + 0.999 999 999 999 999 999 999 998 171 927 426 781 699 612 925 050 244 902 850 396 16;
  • 130) 0.999 999 999 999 999 999 999 998 171 927 426 781 699 612 925 050 244 902 850 396 16 × 2 = 1 + 0.999 999 999 999 999 999 999 996 343 854 853 563 399 225 850 100 489 805 700 792 32;
  • 131) 0.999 999 999 999 999 999 999 996 343 854 853 563 399 225 850 100 489 805 700 792 32 × 2 = 1 + 0.999 999 999 999 999 999 999 992 687 709 707 126 798 451 700 200 979 611 401 584 64;
  • 132) 0.999 999 999 999 999 999 999 992 687 709 707 126 798 451 700 200 979 611 401 584 64 × 2 = 1 + 0.999 999 999 999 999 999 999 985 375 419 414 253 596 903 400 401 959 222 803 169 28;
  • 133) 0.999 999 999 999 999 999 999 985 375 419 414 253 596 903 400 401 959 222 803 169 28 × 2 = 1 + 0.999 999 999 999 999 999 999 970 750 838 828 507 193 806 800 803 918 445 606 338 56;
  • 134) 0.999 999 999 999 999 999 999 970 750 838 828 507 193 806 800 803 918 445 606 338 56 × 2 = 1 + 0.999 999 999 999 999 999 999 941 501 677 657 014 387 613 601 607 836 891 212 677 12;
  • 135) 0.999 999 999 999 999 999 999 941 501 677 657 014 387 613 601 607 836 891 212 677 12 × 2 = 1 + 0.999 999 999 999 999 999 999 883 003 355 314 028 775 227 203 215 673 782 425 354 24;
  • 136) 0.999 999 999 999 999 999 999 883 003 355 314 028 775 227 203 215 673 782 425 354 24 × 2 = 1 + 0.999 999 999 999 999 999 999 766 006 710 628 057 550 454 406 431 347 564 850 708 48;
  • 137) 0.999 999 999 999 999 999 999 766 006 710 628 057 550 454 406 431 347 564 850 708 48 × 2 = 1 + 0.999 999 999 999 999 999 999 532 013 421 256 115 100 908 812 862 695 129 701 416 96;
  • 138) 0.999 999 999 999 999 999 999 532 013 421 256 115 100 908 812 862 695 129 701 416 96 × 2 = 1 + 0.999 999 999 999 999 999 999 064 026 842 512 230 201 817 625 725 390 259 402 833 92;
  • 139) 0.999 999 999 999 999 999 999 064 026 842 512 230 201 817 625 725 390 259 402 833 92 × 2 = 1 + 0.999 999 999 999 999 999 998 128 053 685 024 460 403 635 251 450 780 518 805 667 84;
  • 140) 0.999 999 999 999 999 999 998 128 053 685 024 460 403 635 251 450 780 518 805 667 84 × 2 = 1 + 0.999 999 999 999 999 999 996 256 107 370 048 920 807 270 502 901 561 037 611 335 68;
  • 141) 0.999 999 999 999 999 999 996 256 107 370 048 920 807 270 502 901 561 037 611 335 68 × 2 = 1 + 0.999 999 999 999 999 999 992 512 214 740 097 841 614 541 005 803 122 075 222 671 36;
  • 142) 0.999 999 999 999 999 999 992 512 214 740 097 841 614 541 005 803 122 075 222 671 36 × 2 = 1 + 0.999 999 999 999 999 999 985 024 429 480 195 683 229 082 011 606 244 150 445 342 72;
  • 143) 0.999 999 999 999 999 999 985 024 429 480 195 683 229 082 011 606 244 150 445 342 72 × 2 = 1 + 0.999 999 999 999 999 999 970 048 858 960 391 366 458 164 023 212 488 300 890 685 44;
  • 144) 0.999 999 999 999 999 999 970 048 858 960 391 366 458 164 023 212 488 300 890 685 44 × 2 = 1 + 0.999 999 999 999 999 999 940 097 717 920 782 732 916 328 046 424 976 601 781 370 88;
  • 145) 0.999 999 999 999 999 999 940 097 717 920 782 732 916 328 046 424 976 601 781 370 88 × 2 = 1 + 0.999 999 999 999 999 999 880 195 435 841 565 465 832 656 092 849 953 203 562 741 76;
  • 146) 0.999 999 999 999 999 999 880 195 435 841 565 465 832 656 092 849 953 203 562 741 76 × 2 = 1 + 0.999 999 999 999 999 999 760 390 871 683 130 931 665 312 185 699 906 407 125 483 52;
  • 147) 0.999 999 999 999 999 999 760 390 871 683 130 931 665 312 185 699 906 407 125 483 52 × 2 = 1 + 0.999 999 999 999 999 999 520 781 743 366 261 863 330 624 371 399 812 814 250 967 04;
  • 148) 0.999 999 999 999 999 999 520 781 743 366 261 863 330 624 371 399 812 814 250 967 04 × 2 = 1 + 0.999 999 999 999 999 999 041 563 486 732 523 726 661 248 742 799 625 628 501 934 08;
  • 149) 0.999 999 999 999 999 999 041 563 486 732 523 726 661 248 742 799 625 628 501 934 08 × 2 = 1 + 0.999 999 999 999 999 998 083 126 973 465 047 453 322 497 485 599 251 257 003 868 16;
  • 150) 0.999 999 999 999 999 998 083 126 973 465 047 453 322 497 485 599 251 257 003 868 16 × 2 = 1 + 0.999 999 999 999 999 996 166 253 946 930 094 906 644 994 971 198 502 514 007 736 32;
  • 151) 0.999 999 999 999 999 996 166 253 946 930 094 906 644 994 971 198 502 514 007 736 32 × 2 = 1 + 0.999 999 999 999 999 992 332 507 893 860 189 813 289 989 942 397 005 028 015 472 64;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 111(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 111(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 128 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 111(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 111(2) × 20 =


1.1111 1111 1111 1111 1111 111(2) × 2-128


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -128


Mantissa (not normalized):
1.1111 1111 1111 1111 1111 111


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-128 + 2(8-1) - 1 =


(-128 + 127)(10) =


-1(10)


9. Negative exponent!

Your base ten decimal number is too close to ZERO to convert it otherwise to 32 bit single precision IEEE 754 binary floating point representation.

So it will be approximated and treated as ZERO.


10. IEEE 754, Special Case: ZERO

ZERO: Under the IEEE 754 standard, the reserved bitpattern of all the bits of the exponent and the mantissa set on 0 is being used.


-0 and +0 are distinct values, though they are equal.


11. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 754 111 437 539 843 68 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 93.45 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 53 555 756 116 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 88 888 888 906 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 1 025 631 404 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 0.000 006 286 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 13.684 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number -85 807 264 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 876.72 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number -69 167 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
Number 5 527.475 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:05 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111