Convert 1001 1111 0100 0110 1101 1000 1010 1111, Unsigned Base 2 Binary Number Written on 32 Bit, To Base 10 Decimal System Equivalent

How to convert 1001 1111 0100 0110 1101 1000 1010 1111(2), the unsigned base 2 binary number written on 32 bit, to a base 10 decimal system equivalent

What are the required steps to convert the base 2 unsigned binary number
1001 1111 0100 0110 1101 1000 1010 1111(2) to a base 10 decimal system equivalent?

1. Map the base 2 unsigned binary number's digits versus the corresponding powers of 2 that their place value represent.

  • 231

    1
  • 230

    0
  • 229

    0
  • 228

    1
  • 227

    1
  • 226

    1
  • 225

    1
  • 224

    1
  • 223

    0
  • 222

    1
  • 221

    0
  • 220

    0
  • 219

    0
  • 218

    1
  • 217

    1
  • 216

    0
  • 215

    1
  • 214

    1
  • 213

    0
  • 212

    1
  • 211

    1
  • 210

    0
  • 29

    0
  • 28

    0
  • 27

    1
  • 26

    0
  • 25

    1
  • 24

    0
  • 23

    1
  • 22

    1
  • 21

    1
  • 20

    1

2. Multiply each bit by its corresponding power of 2 and add all the terms up.

1001 1111 0100 0110 1101 1000 1010 1111(2) =


(1 × 231 + 0 × 230 + 0 × 229 + 1 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 1 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =


(2 147 483 648 + 0 + 0 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 0 + 4 194 304 + 0 + 0 + 0 + 262 144 + 131 072 + 0 + 32 768 + 16 384 + 0 + 4 096 + 2 048 + 0 + 0 + 0 + 128 + 0 + 32 + 0 + 8 + 4 + 2 + 1)(10) =


(2 147 483 648 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 4 194 304 + 262 144 + 131 072 + 32 768 + 16 384 + 4 096 + 2 048 + 128 + 32 + 8 + 4 + 2 + 1)(10) =


2 672 220 335(10)

1001 1111 0100 0110 1101 1000 1010 1111(2), Base 2 unsigned number converted and written as a base 10 decimal system equivalent:
1001 1111 0100 0110 1101 1000 1010 1111(2) = 2 672 220 335(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.


How to convert unsigned binary numbers from binary system to decimal? Simply convert from base two to base ten.

To understand how to convert a number from base two to base ten, the easiest way is to do it through an example - convert the number from base two, 101 0011(2), to base ten:

  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number, increasing each corresponding power of 2 by exactly one unit each time we move to the left:
  • powers of 2: 6 5 4 3 2 1 0
    digits: 1 0 1 0 0 1 1
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Binary unsigned number (base 2), 101 0011(2) = 83(10), unsigned positive integer in base 10