### 2. Multiply each bit by its corresponding power of 2 and add all the terms up.

#### 1001 1111 0100 0110 1101 1000 1011 0000_{(2)} =

#### (1 × 2^{31} + 0 × 2^{30} + 0 × 2^{29} + 1 × 2^{28} + 1 × 2^{27} + 1 × 2^{26} + 1 × 2^{25} + 1 × 2^{24} + 0 × 2^{23} + 1 × 2^{22} + 0 × 2^{21} + 0 × 2^{20} + 0 × 2^{19} + 1 × 2^{18} + 1 × 2^{17} + 0 × 2^{16} + 1 × 2^{15} + 1 × 2^{14} + 0 × 2^{13} + 1 × 2^{12} + 1 × 2^{11} + 0 × 2^{10} + 0 × 2^{9} + 0 × 2^{8} + 1 × 2^{7} + 0 × 2^{6} + 1 × 2^{5} + 1 × 2^{4} + 0 × 2^{3} + 0 × 2^{2} + 0 × 2^{1} + 0 × 2^{0})_{(10)} =

#### (2 147 483 648 + 0 + 0 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 0 + 4 194 304 + 0 + 0 + 0 + 262 144 + 131 072 + 0 + 32 768 + 16 384 + 0 + 4 096 + 2 048 + 0 + 0 + 0 + 128 + 0 + 32 + 16 + 0 + 0 + 0 + 0)_{(10)} =

#### (2 147 483 648 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 4 194 304 + 262 144 + 131 072 + 32 768 + 16 384 + 4 096 + 2 048 + 128 + 32 + 16)_{(10)} =

#### 2 672 220 336_{(10)}

## The number 1001 1111 0100 0110 1101 1000 1011 0000_{(2)} converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):

1001 1111 0100 0110 1101 1000 1011 0000_{(2)} = 2 672 220 336_{(10)}

Spaces were used to group digits: for binary, by 4, for decimal, by 3.