64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028 ÷ 2 = 4 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 + 0;
  • 4 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 ÷ 2 = 2 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 + 0;
  • 2 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 ÷ 2 = 1 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 + 1;
  • 1 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 ÷ 2 = 562 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 + 1;
  • 562 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 ÷ 2 = 281 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 1;
  • 281 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 140 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 140 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 70 312 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 70 312 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 35 156 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 35 156 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 17 578 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 17 578 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 8 789 062 500 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 8 789 062 500 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 4 394 531 250 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 4 394 531 250 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 2 197 265 625 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 2 197 265 625 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 1 098 632 812 500 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 1 098 632 812 500 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 549 316 406 250 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 549 316 406 250 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 274 658 203 125 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 274 658 203 125 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 137 329 101 562 500 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 137 329 101 562 500 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 68 664 550 781 250 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 68 664 550 781 250 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 34 332 275 390 625 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 34 332 275 390 625 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 17 166 137 695 312 500 000 000 000 000 000 000 000 000 000 000 + 0;
  • 17 166 137 695 312 500 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 8 583 068 847 656 250 000 000 000 000 000 000 000 000 000 000 + 0;
  • 8 583 068 847 656 250 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 4 291 534 423 828 125 000 000 000 000 000 000 000 000 000 000 + 0;
  • 4 291 534 423 828 125 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 2 145 767 211 914 062 500 000 000 000 000 000 000 000 000 000 + 0;
  • 2 145 767 211 914 062 500 000 000 000 000 000 000 000 000 000 ÷ 2 = 1 072 883 605 957 031 250 000 000 000 000 000 000 000 000 000 + 0;
  • 1 072 883 605 957 031 250 000 000 000 000 000 000 000 000 000 ÷ 2 = 536 441 802 978 515 625 000 000 000 000 000 000 000 000 000 + 0;
  • 536 441 802 978 515 625 000 000 000 000 000 000 000 000 000 ÷ 2 = 268 220 901 489 257 812 500 000 000 000 000 000 000 000 000 + 0;
  • 268 220 901 489 257 812 500 000 000 000 000 000 000 000 000 ÷ 2 = 134 110 450 744 628 906 250 000 000 000 000 000 000 000 000 + 0;
  • 134 110 450 744 628 906 250 000 000 000 000 000 000 000 000 ÷ 2 = 67 055 225 372 314 453 125 000 000 000 000 000 000 000 000 + 0;
  • 67 055 225 372 314 453 125 000 000 000 000 000 000 000 000 ÷ 2 = 33 527 612 686 157 226 562 500 000 000 000 000 000 000 000 + 0;
  • 33 527 612 686 157 226 562 500 000 000 000 000 000 000 000 ÷ 2 = 16 763 806 343 078 613 281 250 000 000 000 000 000 000 000 + 0;
  • 16 763 806 343 078 613 281 250 000 000 000 000 000 000 000 ÷ 2 = 8 381 903 171 539 306 640 625 000 000 000 000 000 000 000 + 0;
  • 8 381 903 171 539 306 640 625 000 000 000 000 000 000 000 ÷ 2 = 4 190 951 585 769 653 320 312 500 000 000 000 000 000 000 + 0;
  • 4 190 951 585 769 653 320 312 500 000 000 000 000 000 000 ÷ 2 = 2 095 475 792 884 826 660 156 250 000 000 000 000 000 000 + 0;
  • 2 095 475 792 884 826 660 156 250 000 000 000 000 000 000 ÷ 2 = 1 047 737 896 442 413 330 078 125 000 000 000 000 000 000 + 0;
  • 1 047 737 896 442 413 330 078 125 000 000 000 000 000 000 ÷ 2 = 523 868 948 221 206 665 039 062 500 000 000 000 000 000 + 0;
  • 523 868 948 221 206 665 039 062 500 000 000 000 000 000 ÷ 2 = 261 934 474 110 603 332 519 531 250 000 000 000 000 000 + 0;
  • 261 934 474 110 603 332 519 531 250 000 000 000 000 000 ÷ 2 = 130 967 237 055 301 666 259 765 625 000 000 000 000 000 + 0;
  • 130 967 237 055 301 666 259 765 625 000 000 000 000 000 ÷ 2 = 65 483 618 527 650 833 129 882 812 500 000 000 000 000 + 0;
  • 65 483 618 527 650 833 129 882 812 500 000 000 000 000 ÷ 2 = 32 741 809 263 825 416 564 941 406 250 000 000 000 000 + 0;
  • 32 741 809 263 825 416 564 941 406 250 000 000 000 000 ÷ 2 = 16 370 904 631 912 708 282 470 703 125 000 000 000 000 + 0;
  • 16 370 904 631 912 708 282 470 703 125 000 000 000 000 ÷ 2 = 8 185 452 315 956 354 141 235 351 562 500 000 000 000 + 0;
  • 8 185 452 315 956 354 141 235 351 562 500 000 000 000 ÷ 2 = 4 092 726 157 978 177 070 617 675 781 250 000 000 000 + 0;
  • 4 092 726 157 978 177 070 617 675 781 250 000 000 000 ÷ 2 = 2 046 363 078 989 088 535 308 837 890 625 000 000 000 + 0;
  • 2 046 363 078 989 088 535 308 837 890 625 000 000 000 ÷ 2 = 1 023 181 539 494 544 267 654 418 945 312 500 000 000 + 0;
  • 1 023 181 539 494 544 267 654 418 945 312 500 000 000 ÷ 2 = 511 590 769 747 272 133 827 209 472 656 250 000 000 + 0;
  • 511 590 769 747 272 133 827 209 472 656 250 000 000 ÷ 2 = 255 795 384 873 636 066 913 604 736 328 125 000 000 + 0;
  • 255 795 384 873 636 066 913 604 736 328 125 000 000 ÷ 2 = 127 897 692 436 818 033 456 802 368 164 062 500 000 + 0;
  • 127 897 692 436 818 033 456 802 368 164 062 500 000 ÷ 2 = 63 948 846 218 409 016 728 401 184 082 031 250 000 + 0;
  • 63 948 846 218 409 016 728 401 184 082 031 250 000 ÷ 2 = 31 974 423 109 204 508 364 200 592 041 015 625 000 + 0;
  • 31 974 423 109 204 508 364 200 592 041 015 625 000 ÷ 2 = 15 987 211 554 602 254 182 100 296 020 507 812 500 + 0;
  • 15 987 211 554 602 254 182 100 296 020 507 812 500 ÷ 2 = 7 993 605 777 301 127 091 050 148 010 253 906 250 + 0;
  • 7 993 605 777 301 127 091 050 148 010 253 906 250 ÷ 2 = 3 996 802 888 650 563 545 525 074 005 126 953 125 + 0;
  • 3 996 802 888 650 563 545 525 074 005 126 953 125 ÷ 2 = 1 998 401 444 325 281 772 762 537 002 563 476 562 + 1;
  • 1 998 401 444 325 281 772 762 537 002 563 476 562 ÷ 2 = 999 200 722 162 640 886 381 268 501 281 738 281 + 0;
  • 999 200 722 162 640 886 381 268 501 281 738 281 ÷ 2 = 499 600 361 081 320 443 190 634 250 640 869 140 + 1;
  • 499 600 361 081 320 443 190 634 250 640 869 140 ÷ 2 = 249 800 180 540 660 221 595 317 125 320 434 570 + 0;
  • 249 800 180 540 660 221 595 317 125 320 434 570 ÷ 2 = 124 900 090 270 330 110 797 658 562 660 217 285 + 0;
  • 124 900 090 270 330 110 797 658 562 660 217 285 ÷ 2 = 62 450 045 135 165 055 398 829 281 330 108 642 + 1;
  • 62 450 045 135 165 055 398 829 281 330 108 642 ÷ 2 = 31 225 022 567 582 527 699 414 640 665 054 321 + 0;
  • 31 225 022 567 582 527 699 414 640 665 054 321 ÷ 2 = 15 612 511 283 791 263 849 707 320 332 527 160 + 1;
  • 15 612 511 283 791 263 849 707 320 332 527 160 ÷ 2 = 7 806 255 641 895 631 924 853 660 166 263 580 + 0;
  • 7 806 255 641 895 631 924 853 660 166 263 580 ÷ 2 = 3 903 127 820 947 815 962 426 830 083 131 790 + 0;
  • 3 903 127 820 947 815 962 426 830 083 131 790 ÷ 2 = 1 951 563 910 473 907 981 213 415 041 565 895 + 0;
  • 1 951 563 910 473 907 981 213 415 041 565 895 ÷ 2 = 975 781 955 236 953 990 606 707 520 782 947 + 1;
  • 975 781 955 236 953 990 606 707 520 782 947 ÷ 2 = 487 890 977 618 476 995 303 353 760 391 473 + 1;
  • 487 890 977 618 476 995 303 353 760 391 473 ÷ 2 = 243 945 488 809 238 497 651 676 880 195 736 + 1;
  • 243 945 488 809 238 497 651 676 880 195 736 ÷ 2 = 121 972 744 404 619 248 825 838 440 097 868 + 0;
  • 121 972 744 404 619 248 825 838 440 097 868 ÷ 2 = 60 986 372 202 309 624 412 919 220 048 934 + 0;
  • 60 986 372 202 309 624 412 919 220 048 934 ÷ 2 = 30 493 186 101 154 812 206 459 610 024 467 + 0;
  • 30 493 186 101 154 812 206 459 610 024 467 ÷ 2 = 15 246 593 050 577 406 103 229 805 012 233 + 1;
  • 15 246 593 050 577 406 103 229 805 012 233 ÷ 2 = 7 623 296 525 288 703 051 614 902 506 116 + 1;
  • 7 623 296 525 288 703 051 614 902 506 116 ÷ 2 = 3 811 648 262 644 351 525 807 451 253 058 + 0;
  • 3 811 648 262 644 351 525 807 451 253 058 ÷ 2 = 1 905 824 131 322 175 762 903 725 626 529 + 0;
  • 1 905 824 131 322 175 762 903 725 626 529 ÷ 2 = 952 912 065 661 087 881 451 862 813 264 + 1;
  • 952 912 065 661 087 881 451 862 813 264 ÷ 2 = 476 456 032 830 543 940 725 931 406 632 + 0;
  • 476 456 032 830 543 940 725 931 406 632 ÷ 2 = 238 228 016 415 271 970 362 965 703 316 + 0;
  • 238 228 016 415 271 970 362 965 703 316 ÷ 2 = 119 114 008 207 635 985 181 482 851 658 + 0;
  • 119 114 008 207 635 985 181 482 851 658 ÷ 2 = 59 557 004 103 817 992 590 741 425 829 + 0;
  • 59 557 004 103 817 992 590 741 425 829 ÷ 2 = 29 778 502 051 908 996 295 370 712 914 + 1;
  • 29 778 502 051 908 996 295 370 712 914 ÷ 2 = 14 889 251 025 954 498 147 685 356 457 + 0;
  • 14 889 251 025 954 498 147 685 356 457 ÷ 2 = 7 444 625 512 977 249 073 842 678 228 + 1;
  • 7 444 625 512 977 249 073 842 678 228 ÷ 2 = 3 722 312 756 488 624 536 921 339 114 + 0;
  • 3 722 312 756 488 624 536 921 339 114 ÷ 2 = 1 861 156 378 244 312 268 460 669 557 + 0;
  • 1 861 156 378 244 312 268 460 669 557 ÷ 2 = 930 578 189 122 156 134 230 334 778 + 1;
  • 930 578 189 122 156 134 230 334 778 ÷ 2 = 465 289 094 561 078 067 115 167 389 + 0;
  • 465 289 094 561 078 067 115 167 389 ÷ 2 = 232 644 547 280 539 033 557 583 694 + 1;
  • 232 644 547 280 539 033 557 583 694 ÷ 2 = 116 322 273 640 269 516 778 791 847 + 0;
  • 116 322 273 640 269 516 778 791 847 ÷ 2 = 58 161 136 820 134 758 389 395 923 + 1;
  • 58 161 136 820 134 758 389 395 923 ÷ 2 = 29 080 568 410 067 379 194 697 961 + 1;
  • 29 080 568 410 067 379 194 697 961 ÷ 2 = 14 540 284 205 033 689 597 348 980 + 1;
  • 14 540 284 205 033 689 597 348 980 ÷ 2 = 7 270 142 102 516 844 798 674 490 + 0;
  • 7 270 142 102 516 844 798 674 490 ÷ 2 = 3 635 071 051 258 422 399 337 245 + 0;
  • 3 635 071 051 258 422 399 337 245 ÷ 2 = 1 817 535 525 629 211 199 668 622 + 1;
  • 1 817 535 525 629 211 199 668 622 ÷ 2 = 908 767 762 814 605 599 834 311 + 0;
  • 908 767 762 814 605 599 834 311 ÷ 2 = 454 383 881 407 302 799 917 155 + 1;
  • 454 383 881 407 302 799 917 155 ÷ 2 = 227 191 940 703 651 399 958 577 + 1;
  • 227 191 940 703 651 399 958 577 ÷ 2 = 113 595 970 351 825 699 979 288 + 1;
  • 113 595 970 351 825 699 979 288 ÷ 2 = 56 797 985 175 912 849 989 644 + 0;
  • 56 797 985 175 912 849 989 644 ÷ 2 = 28 398 992 587 956 424 994 822 + 0;
  • 28 398 992 587 956 424 994 822 ÷ 2 = 14 199 496 293 978 212 497 411 + 0;
  • 14 199 496 293 978 212 497 411 ÷ 2 = 7 099 748 146 989 106 248 705 + 1;
  • 7 099 748 146 989 106 248 705 ÷ 2 = 3 549 874 073 494 553 124 352 + 1;
  • 3 549 874 073 494 553 124 352 ÷ 2 = 1 774 937 036 747 276 562 176 + 0;
  • 1 774 937 036 747 276 562 176 ÷ 2 = 887 468 518 373 638 281 088 + 0;
  • 887 468 518 373 638 281 088 ÷ 2 = 443 734 259 186 819 140 544 + 0;
  • 443 734 259 186 819 140 544 ÷ 2 = 221 867 129 593 409 570 272 + 0;
  • 221 867 129 593 409 570 272 ÷ 2 = 110 933 564 796 704 785 136 + 0;
  • 110 933 564 796 704 785 136 ÷ 2 = 55 466 782 398 352 392 568 + 0;
  • 55 466 782 398 352 392 568 ÷ 2 = 27 733 391 199 176 196 284 + 0;
  • 27 733 391 199 176 196 284 ÷ 2 = 13 866 695 599 588 098 142 + 0;
  • 13 866 695 599 588 098 142 ÷ 2 = 6 933 347 799 794 049 071 + 0;
  • 6 933 347 799 794 049 071 ÷ 2 = 3 466 673 899 897 024 535 + 1;
  • 3 466 673 899 897 024 535 ÷ 2 = 1 733 336 949 948 512 267 + 1;
  • 1 733 336 949 948 512 267 ÷ 2 = 866 668 474 974 256 133 + 1;
  • 866 668 474 974 256 133 ÷ 2 = 433 334 237 487 128 066 + 1;
  • 433 334 237 487 128 066 ÷ 2 = 216 667 118 743 564 033 + 0;
  • 216 667 118 743 564 033 ÷ 2 = 108 333 559 371 782 016 + 1;
  • 108 333 559 371 782 016 ÷ 2 = 54 166 779 685 891 008 + 0;
  • 54 166 779 685 891 008 ÷ 2 = 27 083 389 842 945 504 + 0;
  • 27 083 389 842 945 504 ÷ 2 = 13 541 694 921 472 752 + 0;
  • 13 541 694 921 472 752 ÷ 2 = 6 770 847 460 736 376 + 0;
  • 6 770 847 460 736 376 ÷ 2 = 3 385 423 730 368 188 + 0;
  • 3 385 423 730 368 188 ÷ 2 = 1 692 711 865 184 094 + 0;
  • 1 692 711 865 184 094 ÷ 2 = 846 355 932 592 047 + 0;
  • 846 355 932 592 047 ÷ 2 = 423 177 966 296 023 + 1;
  • 423 177 966 296 023 ÷ 2 = 211 588 983 148 011 + 1;
  • 211 588 983 148 011 ÷ 2 = 105 794 491 574 005 + 1;
  • 105 794 491 574 005 ÷ 2 = 52 897 245 787 002 + 1;
  • 52 897 245 787 002 ÷ 2 = 26 448 622 893 501 + 0;
  • 26 448 622 893 501 ÷ 2 = 13 224 311 446 750 + 1;
  • 13 224 311 446 750 ÷ 2 = 6 612 155 723 375 + 0;
  • 6 612 155 723 375 ÷ 2 = 3 306 077 861 687 + 1;
  • 3 306 077 861 687 ÷ 2 = 1 653 038 930 843 + 1;
  • 1 653 038 930 843 ÷ 2 = 826 519 465 421 + 1;
  • 826 519 465 421 ÷ 2 = 413 259 732 710 + 1;
  • 413 259 732 710 ÷ 2 = 206 629 866 355 + 0;
  • 206 629 866 355 ÷ 2 = 103 314 933 177 + 1;
  • 103 314 933 177 ÷ 2 = 51 657 466 588 + 1;
  • 51 657 466 588 ÷ 2 = 25 828 733 294 + 0;
  • 25 828 733 294 ÷ 2 = 12 914 366 647 + 0;
  • 12 914 366 647 ÷ 2 = 6 457 183 323 + 1;
  • 6 457 183 323 ÷ 2 = 3 228 591 661 + 1;
  • 3 228 591 661 ÷ 2 = 1 614 295 830 + 1;
  • 1 614 295 830 ÷ 2 = 807 147 915 + 0;
  • 807 147 915 ÷ 2 = 403 573 957 + 1;
  • 403 573 957 ÷ 2 = 201 786 978 + 1;
  • 201 786 978 ÷ 2 = 100 893 489 + 0;
  • 100 893 489 ÷ 2 = 50 446 744 + 1;
  • 50 446 744 ÷ 2 = 25 223 372 + 0;
  • 25 223 372 ÷ 2 = 12 611 686 + 0;
  • 12 611 686 ÷ 2 = 6 305 843 + 0;
  • 6 305 843 ÷ 2 = 3 152 921 + 1;
  • 3 152 921 ÷ 2 = 1 576 460 + 1;
  • 1 576 460 ÷ 2 = 788 230 + 0;
  • 788 230 ÷ 2 = 394 115 + 0;
  • 394 115 ÷ 2 = 197 057 + 1;
  • 197 057 ÷ 2 = 98 528 + 1;
  • 98 528 ÷ 2 = 49 264 + 0;
  • 49 264 ÷ 2 = 24 632 + 0;
  • 24 632 ÷ 2 = 12 316 + 0;
  • 12 316 ÷ 2 = 6 158 + 0;
  • 6 158 ÷ 2 = 3 079 + 0;
  • 3 079 ÷ 2 = 1 539 + 1;
  • 1 539 ÷ 2 = 769 + 1;
  • 769 ÷ 2 = 384 + 1;
  • 384 ÷ 2 = 192 + 0;
  • 192 ÷ 2 = 96 + 0;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028(10) =


1 1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 172 positions to the left, so that only one non zero digit remains to the left of it:


9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028(10) =


1 1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100(2) =


1 1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100(2) × 20 =


1.1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100(2) × 2172


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 172


Mantissa (not normalized):
1.1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


172 + 2(11-1) - 1 =


(172 + 1 023)(10) =


1 195(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 195 ÷ 2 = 597 + 1;
  • 597 ÷ 2 = 298 + 1;
  • 298 ÷ 2 = 149 + 0;
  • 149 ÷ 2 = 74 + 1;
  • 74 ÷ 2 = 37 + 0;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1195(10) =


100 1010 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000 0000 1011 1100 0000 0001 1000 1110 1001 1101 0100 1010 0001 0011 0001 1100 0101 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1100 =


1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 1010 1011


Mantissa (52 bits) =
1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000


The base ten decimal number 9 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 028 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 1010 1011 - 1000 0000 1110 0000 1100 1100 0101 1011 1001 1011 1101 0111 1000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 64.016 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:52 UTC (GMT)
Number -8 581 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:52 UTC (GMT)
Number 4 593 055 404 990 971 699 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:52 UTC (GMT)
Number 75.749 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number -172.63 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number -59 781 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number 9 223 372 036 854 775 313 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number 8 794 122 697 371 025 442 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number 634 041 305 999 999 962 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
Number 4 503 599 627 370 496.7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 01:51 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100