Convert Decimal 8.000 976 681 723 843 242 366 456 252 057 105 302 811 56 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 8.000 976 681 723 843 242 366 456 252 057 105 302 811 56(10) to 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

What are the steps to convert decimal number
8.000 976 681 723 843 242 366 456 252 057 105 302 811 56(10) to 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 8.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

8(10) =


1000(2)


3. Convert to binary (base 2) the fractional part: 0.000 976 681 723 843 242 366 456 252 057 105 302 811 56.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 976 681 723 843 242 366 456 252 057 105 302 811 56 × 2 = 0 + 0.001 953 363 447 686 484 732 912 504 114 210 605 623 12;
  • 2) 0.001 953 363 447 686 484 732 912 504 114 210 605 623 12 × 2 = 0 + 0.003 906 726 895 372 969 465 825 008 228 421 211 246 24;
  • 3) 0.003 906 726 895 372 969 465 825 008 228 421 211 246 24 × 2 = 0 + 0.007 813 453 790 745 938 931 650 016 456 842 422 492 48;
  • 4) 0.007 813 453 790 745 938 931 650 016 456 842 422 492 48 × 2 = 0 + 0.015 626 907 581 491 877 863 300 032 913 684 844 984 96;
  • 5) 0.015 626 907 581 491 877 863 300 032 913 684 844 984 96 × 2 = 0 + 0.031 253 815 162 983 755 726 600 065 827 369 689 969 92;
  • 6) 0.031 253 815 162 983 755 726 600 065 827 369 689 969 92 × 2 = 0 + 0.062 507 630 325 967 511 453 200 131 654 739 379 939 84;
  • 7) 0.062 507 630 325 967 511 453 200 131 654 739 379 939 84 × 2 = 0 + 0.125 015 260 651 935 022 906 400 263 309 478 759 879 68;
  • 8) 0.125 015 260 651 935 022 906 400 263 309 478 759 879 68 × 2 = 0 + 0.250 030 521 303 870 045 812 800 526 618 957 519 759 36;
  • 9) 0.250 030 521 303 870 045 812 800 526 618 957 519 759 36 × 2 = 0 + 0.500 061 042 607 740 091 625 601 053 237 915 039 518 72;
  • 10) 0.500 061 042 607 740 091 625 601 053 237 915 039 518 72 × 2 = 1 + 0.000 122 085 215 480 183 251 202 106 475 830 079 037 44;
  • 11) 0.000 122 085 215 480 183 251 202 106 475 830 079 037 44 × 2 = 0 + 0.000 244 170 430 960 366 502 404 212 951 660 158 074 88;
  • 12) 0.000 244 170 430 960 366 502 404 212 951 660 158 074 88 × 2 = 0 + 0.000 488 340 861 920 733 004 808 425 903 320 316 149 76;
  • 13) 0.000 488 340 861 920 733 004 808 425 903 320 316 149 76 × 2 = 0 + 0.000 976 681 723 841 466 009 616 851 806 640 632 299 52;
  • 14) 0.000 976 681 723 841 466 009 616 851 806 640 632 299 52 × 2 = 0 + 0.001 953 363 447 682 932 019 233 703 613 281 264 599 04;
  • 15) 0.001 953 363 447 682 932 019 233 703 613 281 264 599 04 × 2 = 0 + 0.003 906 726 895 365 864 038 467 407 226 562 529 198 08;
  • 16) 0.003 906 726 895 365 864 038 467 407 226 562 529 198 08 × 2 = 0 + 0.007 813 453 790 731 728 076 934 814 453 125 058 396 16;
  • 17) 0.007 813 453 790 731 728 076 934 814 453 125 058 396 16 × 2 = 0 + 0.015 626 907 581 463 456 153 869 628 906 250 116 792 32;
  • 18) 0.015 626 907 581 463 456 153 869 628 906 250 116 792 32 × 2 = 0 + 0.031 253 815 162 926 912 307 739 257 812 500 233 584 64;
  • 19) 0.031 253 815 162 926 912 307 739 257 812 500 233 584 64 × 2 = 0 + 0.062 507 630 325 853 824 615 478 515 625 000 467 169 28;
  • 20) 0.062 507 630 325 853 824 615 478 515 625 000 467 169 28 × 2 = 0 + 0.125 015 260 651 707 649 230 957 031 250 000 934 338 56;
  • 21) 0.125 015 260 651 707 649 230 957 031 250 000 934 338 56 × 2 = 0 + 0.250 030 521 303 415 298 461 914 062 500 001 868 677 12;
  • 22) 0.250 030 521 303 415 298 461 914 062 500 001 868 677 12 × 2 = 0 + 0.500 061 042 606 830 596 923 828 125 000 003 737 354 24;
  • 23) 0.500 061 042 606 830 596 923 828 125 000 003 737 354 24 × 2 = 1 + 0.000 122 085 213 661 193 847 656 250 000 007 474 708 48;
  • 24) 0.000 122 085 213 661 193 847 656 250 000 007 474 708 48 × 2 = 0 + 0.000 244 170 427 322 387 695 312 500 000 014 949 416 96;
  • 25) 0.000 244 170 427 322 387 695 312 500 000 014 949 416 96 × 2 = 0 + 0.000 488 340 854 644 775 390 625 000 000 029 898 833 92;
  • 26) 0.000 488 340 854 644 775 390 625 000 000 029 898 833 92 × 2 = 0 + 0.000 976 681 709 289 550 781 250 000 000 059 797 667 84;
  • 27) 0.000 976 681 709 289 550 781 250 000 000 059 797 667 84 × 2 = 0 + 0.001 953 363 418 579 101 562 500 000 000 119 595 335 68;
  • 28) 0.001 953 363 418 579 101 562 500 000 000 119 595 335 68 × 2 = 0 + 0.003 906 726 837 158 203 125 000 000 000 239 190 671 36;
  • 29) 0.003 906 726 837 158 203 125 000 000 000 239 190 671 36 × 2 = 0 + 0.007 813 453 674 316 406 250 000 000 000 478 381 342 72;
  • 30) 0.007 813 453 674 316 406 250 000 000 000 478 381 342 72 × 2 = 0 + 0.015 626 907 348 632 812 500 000 000 000 956 762 685 44;
  • 31) 0.015 626 907 348 632 812 500 000 000 000 956 762 685 44 × 2 = 0 + 0.031 253 814 697 265 625 000 000 000 001 913 525 370 88;
  • 32) 0.031 253 814 697 265 625 000 000 000 001 913 525 370 88 × 2 = 0 + 0.062 507 629 394 531 250 000 000 000 003 827 050 741 76;
  • 33) 0.062 507 629 394 531 250 000 000 000 003 827 050 741 76 × 2 = 0 + 0.125 015 258 789 062 500 000 000 000 007 654 101 483 52;
  • 34) 0.125 015 258 789 062 500 000 000 000 007 654 101 483 52 × 2 = 0 + 0.250 030 517 578 125 000 000 000 000 015 308 202 967 04;
  • 35) 0.250 030 517 578 125 000 000 000 000 015 308 202 967 04 × 2 = 0 + 0.500 061 035 156 250 000 000 000 000 030 616 405 934 08;
  • 36) 0.500 061 035 156 250 000 000 000 000 030 616 405 934 08 × 2 = 1 + 0.000 122 070 312 500 000 000 000 000 061 232 811 868 16;
  • 37) 0.000 122 070 312 500 000 000 000 000 061 232 811 868 16 × 2 = 0 + 0.000 244 140 625 000 000 000 000 000 122 465 623 736 32;
  • 38) 0.000 244 140 625 000 000 000 000 000 122 465 623 736 32 × 2 = 0 + 0.000 488 281 250 000 000 000 000 000 244 931 247 472 64;
  • 39) 0.000 488 281 250 000 000 000 000 000 244 931 247 472 64 × 2 = 0 + 0.000 976 562 500 000 000 000 000 000 489 862 494 945 28;
  • 40) 0.000 976 562 500 000 000 000 000 000 489 862 494 945 28 × 2 = 0 + 0.001 953 125 000 000 000 000 000 000 979 724 989 890 56;
  • 41) 0.001 953 125 000 000 000 000 000 000 979 724 989 890 56 × 2 = 0 + 0.003 906 250 000 000 000 000 000 001 959 449 979 781 12;
  • 42) 0.003 906 250 000 000 000 000 000 001 959 449 979 781 12 × 2 = 0 + 0.007 812 500 000 000 000 000 000 003 918 899 959 562 24;
  • 43) 0.007 812 500 000 000 000 000 000 003 918 899 959 562 24 × 2 = 0 + 0.015 625 000 000 000 000 000 000 007 837 799 919 124 48;
  • 44) 0.015 625 000 000 000 000 000 000 007 837 799 919 124 48 × 2 = 0 + 0.031 250 000 000 000 000 000 000 015 675 599 838 248 96;
  • 45) 0.031 250 000 000 000 000 000 000 015 675 599 838 248 96 × 2 = 0 + 0.062 500 000 000 000 000 000 000 031 351 199 676 497 92;
  • 46) 0.062 500 000 000 000 000 000 000 031 351 199 676 497 92 × 2 = 0 + 0.125 000 000 000 000 000 000 000 062 702 399 352 995 84;
  • 47) 0.125 000 000 000 000 000 000 000 062 702 399 352 995 84 × 2 = 0 + 0.250 000 000 000 000 000 000 000 125 404 798 705 991 68;
  • 48) 0.250 000 000 000 000 000 000 000 125 404 798 705 991 68 × 2 = 0 + 0.500 000 000 000 000 000 000 000 250 809 597 411 983 36;
  • 49) 0.500 000 000 000 000 000 000 000 250 809 597 411 983 36 × 2 = 1 + 0.000 000 000 000 000 000 000 000 501 619 194 823 966 72;
  • 50) 0.000 000 000 000 000 000 000 000 501 619 194 823 966 72 × 2 = 0 + 0.000 000 000 000 000 000 000 001 003 238 389 647 933 44;
  • 51) 0.000 000 000 000 000 000 000 001 003 238 389 647 933 44 × 2 = 0 + 0.000 000 000 000 000 000 000 002 006 476 779 295 866 88;
  • 52) 0.000 000 000 000 000 000 000 002 006 476 779 295 866 88 × 2 = 0 + 0.000 000 000 000 000 000 000 004 012 953 558 591 733 76;
  • 53) 0.000 000 000 000 000 000 000 004 012 953 558 591 733 76 × 2 = 0 + 0.000 000 000 000 000 000 000 008 025 907 117 183 467 52;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 976 681 723 843 242 366 456 252 057 105 302 811 56(10) =


0.0000 0000 0100 0000 0000 0010 0000 0000 0001 0000 0000 0000 1000 0(2)

5. Positive number before normalization:

8.000 976 681 723 843 242 366 456 252 057 105 302 811 56(10) =


1000.0000 0000 0100 0000 0000 0010 0000 0000 0001 0000 0000 0000 1000 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the left, so that only one non zero digit remains to the left of it:


8.000 976 681 723 843 242 366 456 252 057 105 302 811 56(10) =


1000.0000 0000 0100 0000 0000 0010 0000 0000 0001 0000 0000 0000 1000 0(2) =


1000.0000 0000 0100 0000 0000 0010 0000 0000 0001 0000 0000 0000 1000 0(2) × 20 =


1.0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001 0000(2) × 23


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 3


Mantissa (not normalized):
1.0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001 0000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


3 + 2(11-1) - 1 =


(3 + 1 023)(10) =


1 026(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 026 ÷ 2 = 513 + 0;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1026(10) =


100 0000 0010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001 0000 =


0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0010


Mantissa (52 bits) =
0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001


Decimal number 8.000 976 681 723 843 242 366 456 252 057 105 302 811 56 converted to 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0010 - 0000 0000 0000 1000 0000 0000 0100 0000 0000 0010 0000 0000 0001


How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100