64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 8.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


8(10) =


1000(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 12;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 24;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 48;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 96;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 92;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 84;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 68;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 015 36;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 015 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 030 72;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 030 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 061 44;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 061 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 122 88;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 122 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 245 76;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 245 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 491 52;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 491 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 983 04;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 983 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 966 08;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 966 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 932 16;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 932 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 864 32;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 864 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 015 728 64;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 015 728 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 031 457 28;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 031 457 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 062 914 56;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 062 914 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 125 829 12;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 125 829 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 251 658 24;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 251 658 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 503 316 48;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 503 316 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 006 632 96;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 006 632 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 013 265 92;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 013 265 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 004 026 531 84;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 004 026 531 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 008 053 063 68;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 008 053 063 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 016 106 127 36;
  • 29) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 016 106 127 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 032 212 254 72;
  • 30) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 032 212 254 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 064 424 509 44;
  • 31) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 064 424 509 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 128 849 018 88;
  • 32) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 128 849 018 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 257 698 037 76;
  • 33) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 257 698 037 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 515 396 075 52;
  • 34) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 515 396 075 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 030 792 151 04;
  • 35) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 030 792 151 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 061 584 302 08;
  • 36) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 061 584 302 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 004 123 168 604 16;
  • 37) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 004 123 168 604 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 008 246 337 208 32;
  • 38) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 008 246 337 208 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 016 492 674 416 64;
  • 39) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 016 492 674 416 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 032 985 348 833 28;
  • 40) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 032 985 348 833 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 065 970 697 666 56;
  • 41) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 065 970 697 666 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 131 941 395 333 12;
  • 42) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 131 941 395 333 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 263 882 790 666 24;
  • 43) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 263 882 790 666 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 527 765 581 332 48;
  • 44) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 527 765 581 332 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 055 531 162 664 96;
  • 45) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 055 531 162 664 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 002 111 062 325 329 92;
  • 46) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 002 111 062 325 329 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 004 222 124 650 659 84;
  • 47) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 004 222 124 650 659 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 008 444 249 301 319 68;
  • 48) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 008 444 249 301 319 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 016 888 498 602 639 36;
  • 49) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 016 888 498 602 639 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 033 776 997 205 278 72;
  • 50) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 033 776 997 205 278 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 067 553 994 410 557 44;
  • 51) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 067 553 994 410 557 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 135 107 988 821 114 88;
  • 52) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 135 107 988 821 114 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 270 215 977 642 229 76;
  • 53) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 270 215 977 642 229 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 540 431 955 284 459 52;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0(2)


5. Positive number before normalization:

8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06(10) =


1000.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the left, so that only one non zero digit remains to the left of it:


8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06(10) =


1000.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0(2) =


1000.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0(2) × 20 =


1.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) × 23


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 3


Mantissa (not normalized):
1.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


3 + 2(11-1) - 1 =


(3 + 1 023)(10) =


1 026(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 026 ÷ 2 = 513 + 0;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1026(10) =


100 0000 0010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0010


Mantissa (52 bits) =
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 0010 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -29.54 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:51 UTC (GMT)
Number 1 001 001 111 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:51 UTC (GMT)
Number -1 594 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:51 UTC (GMT)
Number 2 629 718 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:51 UTC (GMT)
Number 33.63 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
Number 198 764 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
Number 12 345.678 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
Number 12 941 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
Number -9 146 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
Number 15 093 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 01:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100