64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 64.457 565 667 979 78 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 64.457 565 667 979 78(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 64.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


64(10) =


100 0000(2)


3. Convert to binary (base 2) the fractional part: 0.457 565 667 979 78.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.457 565 667 979 78 × 2 = 0 + 0.915 131 335 959 56;
  • 2) 0.915 131 335 959 56 × 2 = 1 + 0.830 262 671 919 12;
  • 3) 0.830 262 671 919 12 × 2 = 1 + 0.660 525 343 838 24;
  • 4) 0.660 525 343 838 24 × 2 = 1 + 0.321 050 687 676 48;
  • 5) 0.321 050 687 676 48 × 2 = 0 + 0.642 101 375 352 96;
  • 6) 0.642 101 375 352 96 × 2 = 1 + 0.284 202 750 705 92;
  • 7) 0.284 202 750 705 92 × 2 = 0 + 0.568 405 501 411 84;
  • 8) 0.568 405 501 411 84 × 2 = 1 + 0.136 811 002 823 68;
  • 9) 0.136 811 002 823 68 × 2 = 0 + 0.273 622 005 647 36;
  • 10) 0.273 622 005 647 36 × 2 = 0 + 0.547 244 011 294 72;
  • 11) 0.547 244 011 294 72 × 2 = 1 + 0.094 488 022 589 44;
  • 12) 0.094 488 022 589 44 × 2 = 0 + 0.188 976 045 178 88;
  • 13) 0.188 976 045 178 88 × 2 = 0 + 0.377 952 090 357 76;
  • 14) 0.377 952 090 357 76 × 2 = 0 + 0.755 904 180 715 52;
  • 15) 0.755 904 180 715 52 × 2 = 1 + 0.511 808 361 431 04;
  • 16) 0.511 808 361 431 04 × 2 = 1 + 0.023 616 722 862 08;
  • 17) 0.023 616 722 862 08 × 2 = 0 + 0.047 233 445 724 16;
  • 18) 0.047 233 445 724 16 × 2 = 0 + 0.094 466 891 448 32;
  • 19) 0.094 466 891 448 32 × 2 = 0 + 0.188 933 782 896 64;
  • 20) 0.188 933 782 896 64 × 2 = 0 + 0.377 867 565 793 28;
  • 21) 0.377 867 565 793 28 × 2 = 0 + 0.755 735 131 586 56;
  • 22) 0.755 735 131 586 56 × 2 = 1 + 0.511 470 263 173 12;
  • 23) 0.511 470 263 173 12 × 2 = 1 + 0.022 940 526 346 24;
  • 24) 0.022 940 526 346 24 × 2 = 0 + 0.045 881 052 692 48;
  • 25) 0.045 881 052 692 48 × 2 = 0 + 0.091 762 105 384 96;
  • 26) 0.091 762 105 384 96 × 2 = 0 + 0.183 524 210 769 92;
  • 27) 0.183 524 210 769 92 × 2 = 0 + 0.367 048 421 539 84;
  • 28) 0.367 048 421 539 84 × 2 = 0 + 0.734 096 843 079 68;
  • 29) 0.734 096 843 079 68 × 2 = 1 + 0.468 193 686 159 36;
  • 30) 0.468 193 686 159 36 × 2 = 0 + 0.936 387 372 318 72;
  • 31) 0.936 387 372 318 72 × 2 = 1 + 0.872 774 744 637 44;
  • 32) 0.872 774 744 637 44 × 2 = 1 + 0.745 549 489 274 88;
  • 33) 0.745 549 489 274 88 × 2 = 1 + 0.491 098 978 549 76;
  • 34) 0.491 098 978 549 76 × 2 = 0 + 0.982 197 957 099 52;
  • 35) 0.982 197 957 099 52 × 2 = 1 + 0.964 395 914 199 04;
  • 36) 0.964 395 914 199 04 × 2 = 1 + 0.928 791 828 398 08;
  • 37) 0.928 791 828 398 08 × 2 = 1 + 0.857 583 656 796 16;
  • 38) 0.857 583 656 796 16 × 2 = 1 + 0.715 167 313 592 32;
  • 39) 0.715 167 313 592 32 × 2 = 1 + 0.430 334 627 184 64;
  • 40) 0.430 334 627 184 64 × 2 = 0 + 0.860 669 254 369 28;
  • 41) 0.860 669 254 369 28 × 2 = 1 + 0.721 338 508 738 56;
  • 42) 0.721 338 508 738 56 × 2 = 1 + 0.442 677 017 477 12;
  • 43) 0.442 677 017 477 12 × 2 = 0 + 0.885 354 034 954 24;
  • 44) 0.885 354 034 954 24 × 2 = 1 + 0.770 708 069 908 48;
  • 45) 0.770 708 069 908 48 × 2 = 1 + 0.541 416 139 816 96;
  • 46) 0.541 416 139 816 96 × 2 = 1 + 0.082 832 279 633 92;
  • 47) 0.082 832 279 633 92 × 2 = 0 + 0.165 664 559 267 84;
  • 48) 0.165 664 559 267 84 × 2 = 0 + 0.331 329 118 535 68;
  • 49) 0.331 329 118 535 68 × 2 = 0 + 0.662 658 237 071 36;
  • 50) 0.662 658 237 071 36 × 2 = 1 + 0.325 316 474 142 72;
  • 51) 0.325 316 474 142 72 × 2 = 0 + 0.650 632 948 285 44;
  • 52) 0.650 632 948 285 44 × 2 = 1 + 0.301 265 896 570 88;
  • 53) 0.301 265 896 570 88 × 2 = 0 + 0.602 531 793 141 76;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.457 565 667 979 78(10) =


0.0111 0101 0010 0011 0000 0110 0000 1011 1011 1110 1101 1100 0101 0(2)


5. Positive number before normalization:

64.457 565 667 979 78(10) =


100 0000.0111 0101 0010 0011 0000 0110 0000 1011 1011 1110 1101 1100 0101 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the left, so that only one non zero digit remains to the left of it:


64.457 565 667 979 78(10) =


100 0000.0111 0101 0010 0011 0000 0110 0000 1011 1011 1110 1101 1100 0101 0(2) =


100 0000.0111 0101 0010 0011 0000 0110 0000 1011 1011 1110 1101 1100 0101 0(2) × 20 =


1.0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111 0001 010(2) × 26


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 6


Mantissa (not normalized):
1.0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111 0001 010


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


6 + 2(11-1) - 1 =


(6 + 1 023)(10) =


1 029(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 029 ÷ 2 = 514 + 1;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1029(10) =


100 0000 0101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111 000 1010 =


0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0101


Mantissa (52 bits) =
0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111


The base ten decimal number 64.457 565 667 979 78 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 0101 - 0000 0001 1101 0100 1000 1100 0001 1000 0010 1110 1111 1011 0111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.644 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:51 UTC (GMT)
Number 4.899 999 613 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:51 UTC (GMT)
Number 170.111 111 111 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:51 UTC (GMT)
Number 227 494 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number 41 209.057 389 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number 2 312 556.000 000 463 222 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number -1 396 696 347 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number -0.000 000 010 829 423 828 310 34 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number 42.232 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
Number 11 212 551 131 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 14:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100