Convert the Number 4 631 347 190 580 256 152 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 4 631 347 190 580 256 152(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 4 631 347 190 580 256 152 ÷ 2 = 2 315 673 595 290 128 076 + 0;
  • 2 315 673 595 290 128 076 ÷ 2 = 1 157 836 797 645 064 038 + 0;
  • 1 157 836 797 645 064 038 ÷ 2 = 578 918 398 822 532 019 + 0;
  • 578 918 398 822 532 019 ÷ 2 = 289 459 199 411 266 009 + 1;
  • 289 459 199 411 266 009 ÷ 2 = 144 729 599 705 633 004 + 1;
  • 144 729 599 705 633 004 ÷ 2 = 72 364 799 852 816 502 + 0;
  • 72 364 799 852 816 502 ÷ 2 = 36 182 399 926 408 251 + 0;
  • 36 182 399 926 408 251 ÷ 2 = 18 091 199 963 204 125 + 1;
  • 18 091 199 963 204 125 ÷ 2 = 9 045 599 981 602 062 + 1;
  • 9 045 599 981 602 062 ÷ 2 = 4 522 799 990 801 031 + 0;
  • 4 522 799 990 801 031 ÷ 2 = 2 261 399 995 400 515 + 1;
  • 2 261 399 995 400 515 ÷ 2 = 1 130 699 997 700 257 + 1;
  • 1 130 699 997 700 257 ÷ 2 = 565 349 998 850 128 + 1;
  • 565 349 998 850 128 ÷ 2 = 282 674 999 425 064 + 0;
  • 282 674 999 425 064 ÷ 2 = 141 337 499 712 532 + 0;
  • 141 337 499 712 532 ÷ 2 = 70 668 749 856 266 + 0;
  • 70 668 749 856 266 ÷ 2 = 35 334 374 928 133 + 0;
  • 35 334 374 928 133 ÷ 2 = 17 667 187 464 066 + 1;
  • 17 667 187 464 066 ÷ 2 = 8 833 593 732 033 + 0;
  • 8 833 593 732 033 ÷ 2 = 4 416 796 866 016 + 1;
  • 4 416 796 866 016 ÷ 2 = 2 208 398 433 008 + 0;
  • 2 208 398 433 008 ÷ 2 = 1 104 199 216 504 + 0;
  • 1 104 199 216 504 ÷ 2 = 552 099 608 252 + 0;
  • 552 099 608 252 ÷ 2 = 276 049 804 126 + 0;
  • 276 049 804 126 ÷ 2 = 138 024 902 063 + 0;
  • 138 024 902 063 ÷ 2 = 69 012 451 031 + 1;
  • 69 012 451 031 ÷ 2 = 34 506 225 515 + 1;
  • 34 506 225 515 ÷ 2 = 17 253 112 757 + 1;
  • 17 253 112 757 ÷ 2 = 8 626 556 378 + 1;
  • 8 626 556 378 ÷ 2 = 4 313 278 189 + 0;
  • 4 313 278 189 ÷ 2 = 2 156 639 094 + 1;
  • 2 156 639 094 ÷ 2 = 1 078 319 547 + 0;
  • 1 078 319 547 ÷ 2 = 539 159 773 + 1;
  • 539 159 773 ÷ 2 = 269 579 886 + 1;
  • 269 579 886 ÷ 2 = 134 789 943 + 0;
  • 134 789 943 ÷ 2 = 67 394 971 + 1;
  • 67 394 971 ÷ 2 = 33 697 485 + 1;
  • 33 697 485 ÷ 2 = 16 848 742 + 1;
  • 16 848 742 ÷ 2 = 8 424 371 + 0;
  • 8 424 371 ÷ 2 = 4 212 185 + 1;
  • 4 212 185 ÷ 2 = 2 106 092 + 1;
  • 2 106 092 ÷ 2 = 1 053 046 + 0;
  • 1 053 046 ÷ 2 = 526 523 + 0;
  • 526 523 ÷ 2 = 263 261 + 1;
  • 263 261 ÷ 2 = 131 630 + 1;
  • 131 630 ÷ 2 = 65 815 + 0;
  • 65 815 ÷ 2 = 32 907 + 1;
  • 32 907 ÷ 2 = 16 453 + 1;
  • 16 453 ÷ 2 = 8 226 + 1;
  • 8 226 ÷ 2 = 4 113 + 0;
  • 4 113 ÷ 2 = 2 056 + 1;
  • 2 056 ÷ 2 = 1 028 + 0;
  • 1 028 ÷ 2 = 514 + 0;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


4 631 347 190 580 256 152(10) =


100 0000 0100 0101 1101 1001 1011 1011 0101 1110 0000 1010 0001 1101 1001 1000(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 62 positions to the left, so that only one non zero digit remains to the left of it:


4 631 347 190 580 256 152(10) =


100 0000 0100 0101 1101 1001 1011 1011 0101 1110 0000 1010 0001 1101 1001 1000(2) =


100 0000 0100 0101 1101 1001 1011 1011 0101 1110 0000 1010 0001 1101 1001 1000(2) × 20 =


1.0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111 0110 0110 00(2) × 262


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 62


Mantissa (not normalized):
1.0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111 0110 0110 00


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


62 + 2(11-1) - 1 =


(62 + 1 023)(10) =


1 085(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 085 ÷ 2 = 542 + 1;
  • 542 ÷ 2 = 271 + 0;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1085(10) =


100 0011 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111 01 1001 1000 =


0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1101


Mantissa (52 bits) =
0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111


The base ten decimal number 4 631 347 190 580 256 152 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1101 - 0000 0001 0001 0111 0110 0110 1110 1101 0111 1000 0010 1000 0111

(64 bits IEEE 754)

Number 4 631 347 190 580 256 151 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 4 631 347 190 580 256 153 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 4 631 347 190 580 256 152 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:48 UTC (GMT)
Number -1 412 512 105 485 472 252 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:48 UTC (GMT)
Number 10 011 105 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:48 UTC (GMT)
Number -99 244 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:48 UTC (GMT)
Number 117.94 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:48 UTC (GMT)
Number 53.26 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:47 UTC (GMT)
Number 2.560 879 601 235 235 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:47 UTC (GMT)
Number 100 000 001 111 001 011 100 000 000 000 000 000 000 000 000 000 000 000 000 000 010 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:47 UTC (GMT)
Number 0.771 105 412 703 970 411 806 145 931 06 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:47 UTC (GMT)
Number 8 927 323 198 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:47 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal