4 616 339 185 995 875 529 Converted to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 4 616 339 185 995 875 529(10) to 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

What are the steps to convert decimal number
4 616 339 185 995 875 529(10) to 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 4 616 339 185 995 875 529 ÷ 2 = 2 308 169 592 997 937 764 + 1;
  • 2 308 169 592 997 937 764 ÷ 2 = 1 154 084 796 498 968 882 + 0;
  • 1 154 084 796 498 968 882 ÷ 2 = 577 042 398 249 484 441 + 0;
  • 577 042 398 249 484 441 ÷ 2 = 288 521 199 124 742 220 + 1;
  • 288 521 199 124 742 220 ÷ 2 = 144 260 599 562 371 110 + 0;
  • 144 260 599 562 371 110 ÷ 2 = 72 130 299 781 185 555 + 0;
  • 72 130 299 781 185 555 ÷ 2 = 36 065 149 890 592 777 + 1;
  • 36 065 149 890 592 777 ÷ 2 = 18 032 574 945 296 388 + 1;
  • 18 032 574 945 296 388 ÷ 2 = 9 016 287 472 648 194 + 0;
  • 9 016 287 472 648 194 ÷ 2 = 4 508 143 736 324 097 + 0;
  • 4 508 143 736 324 097 ÷ 2 = 2 254 071 868 162 048 + 1;
  • 2 254 071 868 162 048 ÷ 2 = 1 127 035 934 081 024 + 0;
  • 1 127 035 934 081 024 ÷ 2 = 563 517 967 040 512 + 0;
  • 563 517 967 040 512 ÷ 2 = 281 758 983 520 256 + 0;
  • 281 758 983 520 256 ÷ 2 = 140 879 491 760 128 + 0;
  • 140 879 491 760 128 ÷ 2 = 70 439 745 880 064 + 0;
  • 70 439 745 880 064 ÷ 2 = 35 219 872 940 032 + 0;
  • 35 219 872 940 032 ÷ 2 = 17 609 936 470 016 + 0;
  • 17 609 936 470 016 ÷ 2 = 8 804 968 235 008 + 0;
  • 8 804 968 235 008 ÷ 2 = 4 402 484 117 504 + 0;
  • 4 402 484 117 504 ÷ 2 = 2 201 242 058 752 + 0;
  • 2 201 242 058 752 ÷ 2 = 1 100 621 029 376 + 0;
  • 1 100 621 029 376 ÷ 2 = 550 310 514 688 + 0;
  • 550 310 514 688 ÷ 2 = 275 155 257 344 + 0;
  • 275 155 257 344 ÷ 2 = 137 577 628 672 + 0;
  • 137 577 628 672 ÷ 2 = 68 788 814 336 + 0;
  • 68 788 814 336 ÷ 2 = 34 394 407 168 + 0;
  • 34 394 407 168 ÷ 2 = 17 197 203 584 + 0;
  • 17 197 203 584 ÷ 2 = 8 598 601 792 + 0;
  • 8 598 601 792 ÷ 2 = 4 299 300 896 + 0;
  • 4 299 300 896 ÷ 2 = 2 149 650 448 + 0;
  • 2 149 650 448 ÷ 2 = 1 074 825 224 + 0;
  • 1 074 825 224 ÷ 2 = 537 412 612 + 0;
  • 537 412 612 ÷ 2 = 268 706 306 + 0;
  • 268 706 306 ÷ 2 = 134 353 153 + 0;
  • 134 353 153 ÷ 2 = 67 176 576 + 1;
  • 67 176 576 ÷ 2 = 33 588 288 + 0;
  • 33 588 288 ÷ 2 = 16 794 144 + 0;
  • 16 794 144 ÷ 2 = 8 397 072 + 0;
  • 8 397 072 ÷ 2 = 4 198 536 + 0;
  • 4 198 536 ÷ 2 = 2 099 268 + 0;
  • 2 099 268 ÷ 2 = 1 049 634 + 0;
  • 1 049 634 ÷ 2 = 524 817 + 0;
  • 524 817 ÷ 2 = 262 408 + 1;
  • 262 408 ÷ 2 = 131 204 + 0;
  • 131 204 ÷ 2 = 65 602 + 0;
  • 65 602 ÷ 2 = 32 801 + 0;
  • 32 801 ÷ 2 = 16 400 + 1;
  • 16 400 ÷ 2 = 8 200 + 0;
  • 8 200 ÷ 2 = 4 100 + 0;
  • 4 100 ÷ 2 = 2 050 + 0;
  • 2 050 ÷ 2 = 1 025 + 0;
  • 1 025 ÷ 2 = 512 + 1;
  • 512 ÷ 2 = 256 + 0;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

4 616 339 185 995 875 529(10) =


100 0000 0001 0000 1000 1000 0000 1000 0000 0000 0000 0000 0000 0100 1100 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 62 positions to the left, so that only one non zero digit remains to the left of it:


4 616 339 185 995 875 529(10) =


100 0000 0001 0000 1000 1000 0000 1000 0000 0000 0000 0000 0000 0100 1100 1001(2) =


100 0000 0001 0000 1000 1000 0000 1000 0000 0000 0000 0000 0000 0100 1100 1001(2) × 20 =


1.0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001 0011 0010 01(2) × 262


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 62


Mantissa (not normalized):
1.0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001 0011 0010 01


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


62 + 2(11-1) - 1 =


(62 + 1 023)(10) =


1 085(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 085 ÷ 2 = 542 + 1;
  • 542 ÷ 2 = 271 + 0;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1085(10) =


100 0011 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001 00 1100 1001 =


0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1101


Mantissa (52 bits) =
0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001


Decimal number 4 616 339 185 995 875 529 converted to 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0011 1101 - 0000 0000 0100 0010 0010 0000 0010 0000 0000 0000 0000 0000 0001


How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100