Convert 42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. First, convert to the binary (base 2) the integer part: 42.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


42(10) =


10 1010(2)


3. Convert to the binary (base 2) the fractional part: 0.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67 × 2 = 0 + 0.648 437 500 000 000 444 089 209 850 062 616 169 452 667 34;
  • 2) 0.648 437 500 000 000 444 089 209 850 062 616 169 452 667 34 × 2 = 1 + 0.296 875 000 000 000 888 178 419 700 125 232 338 905 334 68;
  • 3) 0.296 875 000 000 000 888 178 419 700 125 232 338 905 334 68 × 2 = 0 + 0.593 750 000 000 001 776 356 839 400 250 464 677 810 669 36;
  • 4) 0.593 750 000 000 001 776 356 839 400 250 464 677 810 669 36 × 2 = 1 + 0.187 500 000 000 003 552 713 678 800 500 929 355 621 338 72;
  • 5) 0.187 500 000 000 003 552 713 678 800 500 929 355 621 338 72 × 2 = 0 + 0.375 000 000 000 007 105 427 357 601 001 858 711 242 677 44;
  • 6) 0.375 000 000 000 007 105 427 357 601 001 858 711 242 677 44 × 2 = 0 + 0.750 000 000 000 014 210 854 715 202 003 717 422 485 354 88;
  • 7) 0.750 000 000 000 014 210 854 715 202 003 717 422 485 354 88 × 2 = 1 + 0.500 000 000 000 028 421 709 430 404 007 434 844 970 709 76;
  • 8) 0.500 000 000 000 028 421 709 430 404 007 434 844 970 709 76 × 2 = 1 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 419 52;
  • 9) 0.000 000 000 000 056 843 418 860 808 014 869 689 941 419 52 × 2 = 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 839 04;
  • 10) 0.000 000 000 000 113 686 837 721 616 029 739 379 882 839 04 × 2 = 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 678 08;
  • 11) 0.000 000 000 000 227 373 675 443 232 059 478 759 765 678 08 × 2 = 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 356 16;
  • 12) 0.000 000 000 000 454 747 350 886 464 118 957 519 531 356 16 × 2 = 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 712 32;
  • 13) 0.000 000 000 000 909 494 701 772 928 237 915 039 062 712 32 × 2 = 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 424 64;
  • 14) 0.000 000 000 001 818 989 403 545 856 475 830 078 125 424 64 × 2 = 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 250 849 28;
  • 15) 0.000 000 000 003 637 978 807 091 712 951 660 156 250 849 28 × 2 = 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 501 698 56;
  • 16) 0.000 000 000 007 275 957 614 183 425 903 320 312 501 698 56 × 2 = 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 003 397 12;
  • 17) 0.000 000 000 014 551 915 228 366 851 806 640 625 003 397 12 × 2 = 0 + 0.000 000 000 029 103 830 456 733 703 613 281 250 006 794 24;
  • 18) 0.000 000 000 029 103 830 456 733 703 613 281 250 006 794 24 × 2 = 0 + 0.000 000 000 058 207 660 913 467 407 226 562 500 013 588 48;
  • 19) 0.000 000 000 058 207 660 913 467 407 226 562 500 013 588 48 × 2 = 0 + 0.000 000 000 116 415 321 826 934 814 453 125 000 027 176 96;
  • 20) 0.000 000 000 116 415 321 826 934 814 453 125 000 027 176 96 × 2 = 0 + 0.000 000 000 232 830 643 653 869 628 906 250 000 054 353 92;
  • 21) 0.000 000 000 232 830 643 653 869 628 906 250 000 054 353 92 × 2 = 0 + 0.000 000 000 465 661 287 307 739 257 812 500 000 108 707 84;
  • 22) 0.000 000 000 465 661 287 307 739 257 812 500 000 108 707 84 × 2 = 0 + 0.000 000 000 931 322 574 615 478 515 625 000 000 217 415 68;
  • 23) 0.000 000 000 931 322 574 615 478 515 625 000 000 217 415 68 × 2 = 0 + 0.000 000 001 862 645 149 230 957 031 250 000 000 434 831 36;
  • 24) 0.000 000 001 862 645 149 230 957 031 250 000 000 434 831 36 × 2 = 0 + 0.000 000 003 725 290 298 461 914 062 500 000 000 869 662 72;
  • 25) 0.000 000 003 725 290 298 461 914 062 500 000 000 869 662 72 × 2 = 0 + 0.000 000 007 450 580 596 923 828 125 000 000 001 739 325 44;
  • 26) 0.000 000 007 450 580 596 923 828 125 000 000 001 739 325 44 × 2 = 0 + 0.000 000 014 901 161 193 847 656 250 000 000 003 478 650 88;
  • 27) 0.000 000 014 901 161 193 847 656 250 000 000 003 478 650 88 × 2 = 0 + 0.000 000 029 802 322 387 695 312 500 000 000 006 957 301 76;
  • 28) 0.000 000 029 802 322 387 695 312 500 000 000 006 957 301 76 × 2 = 0 + 0.000 000 059 604 644 775 390 625 000 000 000 013 914 603 52;
  • 29) 0.000 000 059 604 644 775 390 625 000 000 000 013 914 603 52 × 2 = 0 + 0.000 000 119 209 289 550 781 250 000 000 000 027 829 207 04;
  • 30) 0.000 000 119 209 289 550 781 250 000 000 000 027 829 207 04 × 2 = 0 + 0.000 000 238 418 579 101 562 500 000 000 000 055 658 414 08;
  • 31) 0.000 000 238 418 579 101 562 500 000 000 000 055 658 414 08 × 2 = 0 + 0.000 000 476 837 158 203 125 000 000 000 000 111 316 828 16;
  • 32) 0.000 000 476 837 158 203 125 000 000 000 000 111 316 828 16 × 2 = 0 + 0.000 000 953 674 316 406 250 000 000 000 000 222 633 656 32;
  • 33) 0.000 000 953 674 316 406 250 000 000 000 000 222 633 656 32 × 2 = 0 + 0.000 001 907 348 632 812 500 000 000 000 000 445 267 312 64;
  • 34) 0.000 001 907 348 632 812 500 000 000 000 000 445 267 312 64 × 2 = 0 + 0.000 003 814 697 265 625 000 000 000 000 000 890 534 625 28;
  • 35) 0.000 003 814 697 265 625 000 000 000 000 000 890 534 625 28 × 2 = 0 + 0.000 007 629 394 531 250 000 000 000 000 001 781 069 250 56;
  • 36) 0.000 007 629 394 531 250 000 000 000 000 001 781 069 250 56 × 2 = 0 + 0.000 015 258 789 062 500 000 000 000 000 003 562 138 501 12;
  • 37) 0.000 015 258 789 062 500 000 000 000 000 003 562 138 501 12 × 2 = 0 + 0.000 030 517 578 125 000 000 000 000 000 007 124 277 002 24;
  • 38) 0.000 030 517 578 125 000 000 000 000 000 007 124 277 002 24 × 2 = 0 + 0.000 061 035 156 250 000 000 000 000 000 014 248 554 004 48;
  • 39) 0.000 061 035 156 250 000 000 000 000 000 014 248 554 004 48 × 2 = 0 + 0.000 122 070 312 500 000 000 000 000 000 028 497 108 008 96;
  • 40) 0.000 122 070 312 500 000 000 000 000 000 028 497 108 008 96 × 2 = 0 + 0.000 244 140 625 000 000 000 000 000 000 056 994 216 017 92;
  • 41) 0.000 244 140 625 000 000 000 000 000 000 056 994 216 017 92 × 2 = 0 + 0.000 488 281 250 000 000 000 000 000 000 113 988 432 035 84;
  • 42) 0.000 488 281 250 000 000 000 000 000 000 113 988 432 035 84 × 2 = 0 + 0.000 976 562 500 000 000 000 000 000 000 227 976 864 071 68;
  • 43) 0.000 976 562 500 000 000 000 000 000 000 227 976 864 071 68 × 2 = 0 + 0.001 953 125 000 000 000 000 000 000 000 455 953 728 143 36;
  • 44) 0.001 953 125 000 000 000 000 000 000 000 455 953 728 143 36 × 2 = 0 + 0.003 906 250 000 000 000 000 000 000 000 911 907 456 286 72;
  • 45) 0.003 906 250 000 000 000 000 000 000 000 911 907 456 286 72 × 2 = 0 + 0.007 812 500 000 000 000 000 000 000 001 823 814 912 573 44;
  • 46) 0.007 812 500 000 000 000 000 000 000 001 823 814 912 573 44 × 2 = 0 + 0.015 625 000 000 000 000 000 000 000 003 647 629 825 146 88;
  • 47) 0.015 625 000 000 000 000 000 000 000 003 647 629 825 146 88 × 2 = 0 + 0.031 250 000 000 000 000 000 000 000 007 295 259 650 293 76;
  • 48) 0.031 250 000 000 000 000 000 000 000 007 295 259 650 293 76 × 2 = 0 + 0.062 500 000 000 000 000 000 000 000 014 590 519 300 587 52;
  • 49) 0.062 500 000 000 000 000 000 000 000 014 590 519 300 587 52 × 2 = 0 + 0.125 000 000 000 000 000 000 000 000 029 181 038 601 175 04;
  • 50) 0.125 000 000 000 000 000 000 000 000 029 181 038 601 175 04 × 2 = 0 + 0.250 000 000 000 000 000 000 000 000 058 362 077 202 350 08;
  • 51) 0.250 000 000 000 000 000 000 000 000 058 362 077 202 350 08 × 2 = 0 + 0.500 000 000 000 000 000 000 000 000 116 724 154 404 700 16;
  • 52) 0.500 000 000 000 000 000 000 000 000 116 724 154 404 700 16 × 2 = 1 + 0.000 000 000 000 000 000 000 000 000 233 448 308 809 400 32;
  • 53) 0.000 000 000 000 000 000 000 000 000 233 448 308 809 400 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 466 896 617 618 800 64;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67(10) =


0.0101 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0(2)


5. Positive number before normalization:

42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67(10) =


10 1010.0101 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0(2)


6. Normalize the binary representation of the number.

Shift the decimal mark 5 positions to the left so that only one non zero digit remains to the left of it:


42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67(10) =


10 1010.0101 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0(2) =


10 1010.0101 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0(2) × 20 =


1.0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 10(2) × 25


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 5


Mantissa (not normalized):
1.0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 10


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


5 + 2(11-1) - 1 =


(5 + 1 023)(10) =


1 028(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 028 ÷ 2 = 514 + 0;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1028(10) =


100 0000 0100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00 0010 =


0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0100


Mantissa (52 bits) =
0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000


Number 42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 100 0000 0100 - 0101 0010 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

More operations of this kind:

42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 66 = ? ... 42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 68 = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

42.324 218 750 000 000 222 044 604 925 031 308 084 726 333 67 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:47 UTC (GMT)
65 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:43 UTC (GMT)
70 050.11 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:43 UTC (GMT)
2.333 333 333 333 333 333 333 333 333 333 333 333 333 333 34 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:43 UTC (GMT)
73.647 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:42 UTC (GMT)
64.26 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:42 UTC (GMT)
77 777 779 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:42 UTC (GMT)
75 536 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:41 UTC (GMT)
398 222 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:40 UTC (GMT)
15.76 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:40 UTC (GMT)
0.745 459 324 156 1 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:40 UTC (GMT)
0.859 2 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:39 UTC (GMT)
2 459 014 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:39 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100