64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 344 000 000 000 000 000 000 018 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 344 000 000 000 000 000 000 018(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 344 000 000 000 000 000 000 018 ÷ 2 = 172 000 000 000 000 000 000 009 + 0;
  • 172 000 000 000 000 000 000 009 ÷ 2 = 86 000 000 000 000 000 000 004 + 1;
  • 86 000 000 000 000 000 000 004 ÷ 2 = 43 000 000 000 000 000 000 002 + 0;
  • 43 000 000 000 000 000 000 002 ÷ 2 = 21 500 000 000 000 000 000 001 + 0;
  • 21 500 000 000 000 000 000 001 ÷ 2 = 10 750 000 000 000 000 000 000 + 1;
  • 10 750 000 000 000 000 000 000 ÷ 2 = 5 375 000 000 000 000 000 000 + 0;
  • 5 375 000 000 000 000 000 000 ÷ 2 = 2 687 500 000 000 000 000 000 + 0;
  • 2 687 500 000 000 000 000 000 ÷ 2 = 1 343 750 000 000 000 000 000 + 0;
  • 1 343 750 000 000 000 000 000 ÷ 2 = 671 875 000 000 000 000 000 + 0;
  • 671 875 000 000 000 000 000 ÷ 2 = 335 937 500 000 000 000 000 + 0;
  • 335 937 500 000 000 000 000 ÷ 2 = 167 968 750 000 000 000 000 + 0;
  • 167 968 750 000 000 000 000 ÷ 2 = 83 984 375 000 000 000 000 + 0;
  • 83 984 375 000 000 000 000 ÷ 2 = 41 992 187 500 000 000 000 + 0;
  • 41 992 187 500 000 000 000 ÷ 2 = 20 996 093 750 000 000 000 + 0;
  • 20 996 093 750 000 000 000 ÷ 2 = 10 498 046 875 000 000 000 + 0;
  • 10 498 046 875 000 000 000 ÷ 2 = 5 249 023 437 500 000 000 + 0;
  • 5 249 023 437 500 000 000 ÷ 2 = 2 624 511 718 750 000 000 + 0;
  • 2 624 511 718 750 000 000 ÷ 2 = 1 312 255 859 375 000 000 + 0;
  • 1 312 255 859 375 000 000 ÷ 2 = 656 127 929 687 500 000 + 0;
  • 656 127 929 687 500 000 ÷ 2 = 328 063 964 843 750 000 + 0;
  • 328 063 964 843 750 000 ÷ 2 = 164 031 982 421 875 000 + 0;
  • 164 031 982 421 875 000 ÷ 2 = 82 015 991 210 937 500 + 0;
  • 82 015 991 210 937 500 ÷ 2 = 41 007 995 605 468 750 + 0;
  • 41 007 995 605 468 750 ÷ 2 = 20 503 997 802 734 375 + 0;
  • 20 503 997 802 734 375 ÷ 2 = 10 251 998 901 367 187 + 1;
  • 10 251 998 901 367 187 ÷ 2 = 5 125 999 450 683 593 + 1;
  • 5 125 999 450 683 593 ÷ 2 = 2 562 999 725 341 796 + 1;
  • 2 562 999 725 341 796 ÷ 2 = 1 281 499 862 670 898 + 0;
  • 1 281 499 862 670 898 ÷ 2 = 640 749 931 335 449 + 0;
  • 640 749 931 335 449 ÷ 2 = 320 374 965 667 724 + 1;
  • 320 374 965 667 724 ÷ 2 = 160 187 482 833 862 + 0;
  • 160 187 482 833 862 ÷ 2 = 80 093 741 416 931 + 0;
  • 80 093 741 416 931 ÷ 2 = 40 046 870 708 465 + 1;
  • 40 046 870 708 465 ÷ 2 = 20 023 435 354 232 + 1;
  • 20 023 435 354 232 ÷ 2 = 10 011 717 677 116 + 0;
  • 10 011 717 677 116 ÷ 2 = 5 005 858 838 558 + 0;
  • 5 005 858 838 558 ÷ 2 = 2 502 929 419 279 + 0;
  • 2 502 929 419 279 ÷ 2 = 1 251 464 709 639 + 1;
  • 1 251 464 709 639 ÷ 2 = 625 732 354 819 + 1;
  • 625 732 354 819 ÷ 2 = 312 866 177 409 + 1;
  • 312 866 177 409 ÷ 2 = 156 433 088 704 + 1;
  • 156 433 088 704 ÷ 2 = 78 216 544 352 + 0;
  • 78 216 544 352 ÷ 2 = 39 108 272 176 + 0;
  • 39 108 272 176 ÷ 2 = 19 554 136 088 + 0;
  • 19 554 136 088 ÷ 2 = 9 777 068 044 + 0;
  • 9 777 068 044 ÷ 2 = 4 888 534 022 + 0;
  • 4 888 534 022 ÷ 2 = 2 444 267 011 + 0;
  • 2 444 267 011 ÷ 2 = 1 222 133 505 + 1;
  • 1 222 133 505 ÷ 2 = 611 066 752 + 1;
  • 611 066 752 ÷ 2 = 305 533 376 + 0;
  • 305 533 376 ÷ 2 = 152 766 688 + 0;
  • 152 766 688 ÷ 2 = 76 383 344 + 0;
  • 76 383 344 ÷ 2 = 38 191 672 + 0;
  • 38 191 672 ÷ 2 = 19 095 836 + 0;
  • 19 095 836 ÷ 2 = 9 547 918 + 0;
  • 9 547 918 ÷ 2 = 4 773 959 + 0;
  • 4 773 959 ÷ 2 = 2 386 979 + 1;
  • 2 386 979 ÷ 2 = 1 193 489 + 1;
  • 1 193 489 ÷ 2 = 596 744 + 1;
  • 596 744 ÷ 2 = 298 372 + 0;
  • 298 372 ÷ 2 = 149 186 + 0;
  • 149 186 ÷ 2 = 74 593 + 0;
  • 74 593 ÷ 2 = 37 296 + 1;
  • 37 296 ÷ 2 = 18 648 + 0;
  • 18 648 ÷ 2 = 9 324 + 0;
  • 9 324 ÷ 2 = 4 662 + 0;
  • 4 662 ÷ 2 = 2 331 + 0;
  • 2 331 ÷ 2 = 1 165 + 1;
  • 1 165 ÷ 2 = 582 + 1;
  • 582 ÷ 2 = 291 + 0;
  • 291 ÷ 2 = 145 + 1;
  • 145 ÷ 2 = 72 + 1;
  • 72 ÷ 2 = 36 + 0;
  • 36 ÷ 2 = 18 + 0;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


344 000 000 000 000 000 000 018(10) =


100 1000 1101 1000 0100 0111 0000 0001 1000 0001 1110 0011 0010 0111 0000 0000 0000 0000 0001 0010(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 78 positions to the left, so that only one non zero digit remains to the left of it:


344 000 000 000 000 000 000 018(10) =


100 1000 1101 1000 0100 0111 0000 0001 1000 0001 1110 0011 0010 0111 0000 0000 0000 0000 0001 0010(2) =


100 1000 1101 1000 0100 0111 0000 0001 1000 0001 1110 0011 0010 0111 0000 0000 0000 0000 0001 0010(2) × 20 =


1.0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001 1100 0000 0000 0000 0000 0100 10(2) × 278


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 78


Mantissa (not normalized):
1.0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001 1100 0000 0000 0000 0000 0100 10


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


78 + 2(11-1) - 1 =


(78 + 1 023)(10) =


1 101(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 101 ÷ 2 = 550 + 1;
  • 550 ÷ 2 = 275 + 0;
  • 275 ÷ 2 = 137 + 1;
  • 137 ÷ 2 = 68 + 1;
  • 68 ÷ 2 = 34 + 0;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1101(10) =


100 0100 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001 11 0000 0000 0000 0000 0001 0010 =


0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0100 1101


Mantissa (52 bits) =
0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001


The base ten decimal number 344 000 000 000 000 000 000 018 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0100 1101 - 0010 0011 0110 0001 0001 1100 0000 0110 0000 0111 1000 1100 1001

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 677.64 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 1 822 222 223 126 251 442 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 0.734 32 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 35.5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 1 111 110 100 101 105 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 876 022 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 35 435 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:46 UTC (GMT)
Number 9 914 859 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:45 UTC (GMT)
Number 443 624 298 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:45 UTC (GMT)
Number 590 589 427 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 18:45 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100