64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 3.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 3.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 3.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


3(10) =


11(2)


3. Convert to binary (base 2) the fractional part: 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 64;
  • 2) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 64 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 28;
  • 3) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 28 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 56;
  • 4) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 56 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 12;
  • 5) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 12 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 24;
  • 6) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 24 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 48;
  • 7) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 48 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 96;
  • 8) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 96 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 92;
  • 9) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 92 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 84;
  • 10) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 84 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 68;
  • 11) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 68 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 639 36;
  • 12) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 639 36 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 278 72;
  • 13) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 278 72 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 557 44;
  • 14) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 557 44 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 114 88;
  • 15) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 114 88 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 229 76;
  • 16) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 229 76 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 459 52;
  • 17) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 459 52 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 919 04;
  • 18) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 919 04 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 838 08;
  • 19) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 838 08 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 676 16;
  • 20) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 676 16 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 352 32;
  • 21) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 352 32 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 638 704 64;
  • 22) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 638 704 64 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 277 409 28;
  • 23) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 277 409 28 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 554 818 56;
  • 24) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 554 818 56 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 109 637 12;
  • 25) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 109 637 12 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 219 274 24;
  • 26) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 219 274 24 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 438 548 48;
  • 27) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 438 548 48 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 877 096 96;
  • 28) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 877 096 96 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 754 193 92;
  • 29) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 754 193 92 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 508 387 84;
  • 30) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 508 387 84 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 016 775 68;
  • 31) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 319 016 775 68 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 638 033 551 36;
  • 32) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 638 033 551 36 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 276 067 102 72;
  • 33) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 276 067 102 72 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 552 134 205 44;
  • 34) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 552 134 205 44 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 104 268 410 88;
  • 35) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 104 268 410 88 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 208 536 821 76;
  • 36) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 208 536 821 76 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 417 073 643 52;
  • 37) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 417 073 643 52 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 834 147 287 04;
  • 38) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 834 147 287 04 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 668 294 574 08;
  • 39) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 668 294 574 08 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 336 589 148 16;
  • 40) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 336 589 148 16 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 318 673 178 296 32;
  • 41) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 318 673 178 296 32 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 637 346 356 592 64;
  • 42) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 637 346 356 592 64 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 274 692 713 185 28;
  • 43) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 274 692 713 185 28 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 549 385 426 370 56;
  • 44) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 549 385 426 370 56 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 098 770 852 741 12;
  • 45) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 098 770 852 741 12 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 197 541 705 482 24;
  • 46) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 197 541 705 482 24 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 395 083 410 964 48;
  • 47) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 332 395 083 410 964 48 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 790 166 821 928 96;
  • 48) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 664 790 166 821 928 96 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 580 333 643 857 92;
  • 49) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 580 333 643 857 92 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 160 667 287 715 84;
  • 50) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 659 160 667 287 715 84 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 318 321 334 575 431 68;
  • 51) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 318 321 334 575 431 68 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 636 642 669 150 863 36;
  • 52) 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 636 642 669 150 863 36 × 2 = 1 + 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 273 285 338 301 726 72;
  • 53) 0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 273 285 338 301 726 72 × 2 = 0 + 0.666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666 546 570 676 603 453 44;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32(10) =


0.0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0(2)


5. Positive number before normalization:

3.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32(10) =


11.0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the left, so that only one non zero digit remains to the left of it:


3.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32(10) =


11.0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0(2) =


11.0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0(2) × 20 =


1.1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10(2) × 21


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 1


Mantissa (not normalized):
1.1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


1 + 2(11-1) - 1 =


(1 + 1 023)(10) =


1 024(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 024 ÷ 2 = 512 + 0;
  • 512 ÷ 2 = 256 + 0;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1024(10) =


100 0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10 =


1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0000


Mantissa (52 bits) =
1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010


The base ten decimal number 3.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 32 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 0000 - 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 14 878 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:36 UTC (GMT)
Number 12 435.33 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number -361 247 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number -123 480 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 18 281 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 1 101 075 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 771 470 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 4 516 185 192 014 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 220 122 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:35 UTC (GMT)
Number 3 237 937 046 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 16:34 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100