64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 201 061 061 514 801 000 910 085 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 201 061 061 514 801 000 910 085(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 201 061 061 514 801 000 910 085 ÷ 2 = 100 530 530 757 400 500 455 042 + 1;
  • 100 530 530 757 400 500 455 042 ÷ 2 = 50 265 265 378 700 250 227 521 + 0;
  • 50 265 265 378 700 250 227 521 ÷ 2 = 25 132 632 689 350 125 113 760 + 1;
  • 25 132 632 689 350 125 113 760 ÷ 2 = 12 566 316 344 675 062 556 880 + 0;
  • 12 566 316 344 675 062 556 880 ÷ 2 = 6 283 158 172 337 531 278 440 + 0;
  • 6 283 158 172 337 531 278 440 ÷ 2 = 3 141 579 086 168 765 639 220 + 0;
  • 3 141 579 086 168 765 639 220 ÷ 2 = 1 570 789 543 084 382 819 610 + 0;
  • 1 570 789 543 084 382 819 610 ÷ 2 = 785 394 771 542 191 409 805 + 0;
  • 785 394 771 542 191 409 805 ÷ 2 = 392 697 385 771 095 704 902 + 1;
  • 392 697 385 771 095 704 902 ÷ 2 = 196 348 692 885 547 852 451 + 0;
  • 196 348 692 885 547 852 451 ÷ 2 = 98 174 346 442 773 926 225 + 1;
  • 98 174 346 442 773 926 225 ÷ 2 = 49 087 173 221 386 963 112 + 1;
  • 49 087 173 221 386 963 112 ÷ 2 = 24 543 586 610 693 481 556 + 0;
  • 24 543 586 610 693 481 556 ÷ 2 = 12 271 793 305 346 740 778 + 0;
  • 12 271 793 305 346 740 778 ÷ 2 = 6 135 896 652 673 370 389 + 0;
  • 6 135 896 652 673 370 389 ÷ 2 = 3 067 948 326 336 685 194 + 1;
  • 3 067 948 326 336 685 194 ÷ 2 = 1 533 974 163 168 342 597 + 0;
  • 1 533 974 163 168 342 597 ÷ 2 = 766 987 081 584 171 298 + 1;
  • 766 987 081 584 171 298 ÷ 2 = 383 493 540 792 085 649 + 0;
  • 383 493 540 792 085 649 ÷ 2 = 191 746 770 396 042 824 + 1;
  • 191 746 770 396 042 824 ÷ 2 = 95 873 385 198 021 412 + 0;
  • 95 873 385 198 021 412 ÷ 2 = 47 936 692 599 010 706 + 0;
  • 47 936 692 599 010 706 ÷ 2 = 23 968 346 299 505 353 + 0;
  • 23 968 346 299 505 353 ÷ 2 = 11 984 173 149 752 676 + 1;
  • 11 984 173 149 752 676 ÷ 2 = 5 992 086 574 876 338 + 0;
  • 5 992 086 574 876 338 ÷ 2 = 2 996 043 287 438 169 + 0;
  • 2 996 043 287 438 169 ÷ 2 = 1 498 021 643 719 084 + 1;
  • 1 498 021 643 719 084 ÷ 2 = 749 010 821 859 542 + 0;
  • 749 010 821 859 542 ÷ 2 = 374 505 410 929 771 + 0;
  • 374 505 410 929 771 ÷ 2 = 187 252 705 464 885 + 1;
  • 187 252 705 464 885 ÷ 2 = 93 626 352 732 442 + 1;
  • 93 626 352 732 442 ÷ 2 = 46 813 176 366 221 + 0;
  • 46 813 176 366 221 ÷ 2 = 23 406 588 183 110 + 1;
  • 23 406 588 183 110 ÷ 2 = 11 703 294 091 555 + 0;
  • 11 703 294 091 555 ÷ 2 = 5 851 647 045 777 + 1;
  • 5 851 647 045 777 ÷ 2 = 2 925 823 522 888 + 1;
  • 2 925 823 522 888 ÷ 2 = 1 462 911 761 444 + 0;
  • 1 462 911 761 444 ÷ 2 = 731 455 880 722 + 0;
  • 731 455 880 722 ÷ 2 = 365 727 940 361 + 0;
  • 365 727 940 361 ÷ 2 = 182 863 970 180 + 1;
  • 182 863 970 180 ÷ 2 = 91 431 985 090 + 0;
  • 91 431 985 090 ÷ 2 = 45 715 992 545 + 0;
  • 45 715 992 545 ÷ 2 = 22 857 996 272 + 1;
  • 22 857 996 272 ÷ 2 = 11 428 998 136 + 0;
  • 11 428 998 136 ÷ 2 = 5 714 499 068 + 0;
  • 5 714 499 068 ÷ 2 = 2 857 249 534 + 0;
  • 2 857 249 534 ÷ 2 = 1 428 624 767 + 0;
  • 1 428 624 767 ÷ 2 = 714 312 383 + 1;
  • 714 312 383 ÷ 2 = 357 156 191 + 1;
  • 357 156 191 ÷ 2 = 178 578 095 + 1;
  • 178 578 095 ÷ 2 = 89 289 047 + 1;
  • 89 289 047 ÷ 2 = 44 644 523 + 1;
  • 44 644 523 ÷ 2 = 22 322 261 + 1;
  • 22 322 261 ÷ 2 = 11 161 130 + 1;
  • 11 161 130 ÷ 2 = 5 580 565 + 0;
  • 5 580 565 ÷ 2 = 2 790 282 + 1;
  • 2 790 282 ÷ 2 = 1 395 141 + 0;
  • 1 395 141 ÷ 2 = 697 570 + 1;
  • 697 570 ÷ 2 = 348 785 + 0;
  • 348 785 ÷ 2 = 174 392 + 1;
  • 174 392 ÷ 2 = 87 196 + 0;
  • 87 196 ÷ 2 = 43 598 + 0;
  • 43 598 ÷ 2 = 21 799 + 0;
  • 21 799 ÷ 2 = 10 899 + 1;
  • 10 899 ÷ 2 = 5 449 + 1;
  • 5 449 ÷ 2 = 2 724 + 1;
  • 2 724 ÷ 2 = 1 362 + 0;
  • 1 362 ÷ 2 = 681 + 0;
  • 681 ÷ 2 = 340 + 1;
  • 340 ÷ 2 = 170 + 0;
  • 170 ÷ 2 = 85 + 0;
  • 85 ÷ 2 = 42 + 1;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


201 061 061 514 801 000 910 085(10) =


10 1010 1001 0011 1000 1010 1011 1111 1000 0100 1000 1101 0110 0100 1000 1010 1000 1101 0000 0101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 77 positions to the left, so that only one non zero digit remains to the left of it:


201 061 061 514 801 000 910 085(10) =


10 1010 1001 0011 1000 1010 1011 1111 1000 0100 1000 1101 0110 0100 1000 1010 1000 1101 0000 0101(2) =


10 1010 1001 0011 1000 1010 1011 1111 1000 0100 1000 1101 0110 0100 1000 1010 1000 1101 0000 0101(2) × 20 =


1.0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010 0100 0101 0100 0110 1000 0010 1(2) × 277


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 77


Mantissa (not normalized):
1.0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010 0100 0101 0100 0110 1000 0010 1


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


77 + 2(11-1) - 1 =


(77 + 1 023)(10) =


1 100(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 100 ÷ 2 = 550 + 0;
  • 550 ÷ 2 = 275 + 0;
  • 275 ÷ 2 = 137 + 1;
  • 137 ÷ 2 = 68 + 1;
  • 68 ÷ 2 = 34 + 0;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1100(10) =


100 0100 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010 0 1000 1010 1000 1101 0000 0101 =


0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0100 1100


Mantissa (52 bits) =
0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010


The base ten decimal number 201 061 061 514 801 000 910 085 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0100 1100 - 0101 0100 1001 1100 0101 0101 1111 1100 0010 0100 0110 1011 0010

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 4 294 967 291 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:17 UTC (GMT)
Number 51.68 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:17 UTC (GMT)
Number -3 301 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:17 UTC (GMT)
Number 356.121 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:17 UTC (GMT)
Number 2 500 038 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:16 UTC (GMT)
Number 0.333 333 333 333 333 333 333 333 333 333 333 333 333 335 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:16 UTC (GMT)
Number 0.016 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:16 UTC (GMT)
Number -0.040 443 420 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:16 UTC (GMT)
Number 11 212 551 110.2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:15 UTC (GMT)
Number 60.111 111 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 19 09:15 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100