20.333 332 06 Converted to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 20.333 332 06(10) to 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

What are the steps to convert decimal number
20.333 332 06(10) to 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 20.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

20(10) =


1 0100(2)


3. Convert to binary (base 2) the fractional part: 0.333 332 06.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.333 332 06 × 2 = 0 + 0.666 664 12;
  • 2) 0.666 664 12 × 2 = 1 + 0.333 328 24;
  • 3) 0.333 328 24 × 2 = 0 + 0.666 656 48;
  • 4) 0.666 656 48 × 2 = 1 + 0.333 312 96;
  • 5) 0.333 312 96 × 2 = 0 + 0.666 625 92;
  • 6) 0.666 625 92 × 2 = 1 + 0.333 251 84;
  • 7) 0.333 251 84 × 2 = 0 + 0.666 503 68;
  • 8) 0.666 503 68 × 2 = 1 + 0.333 007 36;
  • 9) 0.333 007 36 × 2 = 0 + 0.666 014 72;
  • 10) 0.666 014 72 × 2 = 1 + 0.332 029 44;
  • 11) 0.332 029 44 × 2 = 0 + 0.664 058 88;
  • 12) 0.664 058 88 × 2 = 1 + 0.328 117 76;
  • 13) 0.328 117 76 × 2 = 0 + 0.656 235 52;
  • 14) 0.656 235 52 × 2 = 1 + 0.312 471 04;
  • 15) 0.312 471 04 × 2 = 0 + 0.624 942 08;
  • 16) 0.624 942 08 × 2 = 1 + 0.249 884 16;
  • 17) 0.249 884 16 × 2 = 0 + 0.499 768 32;
  • 18) 0.499 768 32 × 2 = 0 + 0.999 536 64;
  • 19) 0.999 536 64 × 2 = 1 + 0.999 073 28;
  • 20) 0.999 073 28 × 2 = 1 + 0.998 146 56;
  • 21) 0.998 146 56 × 2 = 1 + 0.996 293 12;
  • 22) 0.996 293 12 × 2 = 1 + 0.992 586 24;
  • 23) 0.992 586 24 × 2 = 1 + 0.985 172 48;
  • 24) 0.985 172 48 × 2 = 1 + 0.970 344 96;
  • 25) 0.970 344 96 × 2 = 1 + 0.940 689 92;
  • 26) 0.940 689 92 × 2 = 1 + 0.881 379 84;
  • 27) 0.881 379 84 × 2 = 1 + 0.762 759 68;
  • 28) 0.762 759 68 × 2 = 1 + 0.525 519 36;
  • 29) 0.525 519 36 × 2 = 1 + 0.051 038 72;
  • 30) 0.051 038 72 × 2 = 0 + 0.102 077 44;
  • 31) 0.102 077 44 × 2 = 0 + 0.204 154 88;
  • 32) 0.204 154 88 × 2 = 0 + 0.408 309 76;
  • 33) 0.408 309 76 × 2 = 0 + 0.816 619 52;
  • 34) 0.816 619 52 × 2 = 1 + 0.633 239 04;
  • 35) 0.633 239 04 × 2 = 1 + 0.266 478 08;
  • 36) 0.266 478 08 × 2 = 0 + 0.532 956 16;
  • 37) 0.532 956 16 × 2 = 1 + 0.065 912 32;
  • 38) 0.065 912 32 × 2 = 0 + 0.131 824 64;
  • 39) 0.131 824 64 × 2 = 0 + 0.263 649 28;
  • 40) 0.263 649 28 × 2 = 0 + 0.527 298 56;
  • 41) 0.527 298 56 × 2 = 1 + 0.054 597 12;
  • 42) 0.054 597 12 × 2 = 0 + 0.109 194 24;
  • 43) 0.109 194 24 × 2 = 0 + 0.218 388 48;
  • 44) 0.218 388 48 × 2 = 0 + 0.436 776 96;
  • 45) 0.436 776 96 × 2 = 0 + 0.873 553 92;
  • 46) 0.873 553 92 × 2 = 1 + 0.747 107 84;
  • 47) 0.747 107 84 × 2 = 1 + 0.494 215 68;
  • 48) 0.494 215 68 × 2 = 0 + 0.988 431 36;
  • 49) 0.988 431 36 × 2 = 1 + 0.976 862 72;
  • 50) 0.976 862 72 × 2 = 1 + 0.953 725 44;
  • 51) 0.953 725 44 × 2 = 1 + 0.907 450 88;
  • 52) 0.907 450 88 × 2 = 1 + 0.814 901 76;
  • 53) 0.814 901 76 × 2 = 1 + 0.629 803 52;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.333 332 06(10) =


0.0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1(2)

5. Positive number before normalization:

20.333 332 06(10) =


1 0100.0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 4 positions to the left, so that only one non zero digit remains to the left of it:


20.333 332 06(10) =


1 0100.0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1(2) =


1 0100.0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1(2) × 20 =


1.0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1(2) × 24


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 4


Mantissa (not normalized):
1.0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1111 1


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


4 + 2(11-1) - 1 =


(4 + 1 023)(10) =


1 027(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 027 ÷ 2 = 513 + 1;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1027(10) =


100 0000 0011(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110 1 1111 =


0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0011


Mantissa (52 bits) =
0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110


Decimal number 20.333 332 06 converted to 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0011 - 0100 0101 0101 0101 0101 0011 1111 1111 1000 0110 1000 1000 0110


How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100