20.333 331 13 Converted to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 20.333 331 13(10) to 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

What are the steps to convert decimal number
20.333 331 13(10) to 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 20.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

20(10) =


1 0100(2)


3. Convert to binary (base 2) the fractional part: 0.333 331 13.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.333 331 13 × 2 = 0 + 0.666 662 26;
  • 2) 0.666 662 26 × 2 = 1 + 0.333 324 52;
  • 3) 0.333 324 52 × 2 = 0 + 0.666 649 04;
  • 4) 0.666 649 04 × 2 = 1 + 0.333 298 08;
  • 5) 0.333 298 08 × 2 = 0 + 0.666 596 16;
  • 6) 0.666 596 16 × 2 = 1 + 0.333 192 32;
  • 7) 0.333 192 32 × 2 = 0 + 0.666 384 64;
  • 8) 0.666 384 64 × 2 = 1 + 0.332 769 28;
  • 9) 0.332 769 28 × 2 = 0 + 0.665 538 56;
  • 10) 0.665 538 56 × 2 = 1 + 0.331 077 12;
  • 11) 0.331 077 12 × 2 = 0 + 0.662 154 24;
  • 12) 0.662 154 24 × 2 = 1 + 0.324 308 48;
  • 13) 0.324 308 48 × 2 = 0 + 0.648 616 96;
  • 14) 0.648 616 96 × 2 = 1 + 0.297 233 92;
  • 15) 0.297 233 92 × 2 = 0 + 0.594 467 84;
  • 16) 0.594 467 84 × 2 = 1 + 0.188 935 68;
  • 17) 0.188 935 68 × 2 = 0 + 0.377 871 36;
  • 18) 0.377 871 36 × 2 = 0 + 0.755 742 72;
  • 19) 0.755 742 72 × 2 = 1 + 0.511 485 44;
  • 20) 0.511 485 44 × 2 = 1 + 0.022 970 88;
  • 21) 0.022 970 88 × 2 = 0 + 0.045 941 76;
  • 22) 0.045 941 76 × 2 = 0 + 0.091 883 52;
  • 23) 0.091 883 52 × 2 = 0 + 0.183 767 04;
  • 24) 0.183 767 04 × 2 = 0 + 0.367 534 08;
  • 25) 0.367 534 08 × 2 = 0 + 0.735 068 16;
  • 26) 0.735 068 16 × 2 = 1 + 0.470 136 32;
  • 27) 0.470 136 32 × 2 = 0 + 0.940 272 64;
  • 28) 0.940 272 64 × 2 = 1 + 0.880 545 28;
  • 29) 0.880 545 28 × 2 = 1 + 0.761 090 56;
  • 30) 0.761 090 56 × 2 = 1 + 0.522 181 12;
  • 31) 0.522 181 12 × 2 = 1 + 0.044 362 24;
  • 32) 0.044 362 24 × 2 = 0 + 0.088 724 48;
  • 33) 0.088 724 48 × 2 = 0 + 0.177 448 96;
  • 34) 0.177 448 96 × 2 = 0 + 0.354 897 92;
  • 35) 0.354 897 92 × 2 = 0 + 0.709 795 84;
  • 36) 0.709 795 84 × 2 = 1 + 0.419 591 68;
  • 37) 0.419 591 68 × 2 = 0 + 0.839 183 36;
  • 38) 0.839 183 36 × 2 = 1 + 0.678 366 72;
  • 39) 0.678 366 72 × 2 = 1 + 0.356 733 44;
  • 40) 0.356 733 44 × 2 = 0 + 0.713 466 88;
  • 41) 0.713 466 88 × 2 = 1 + 0.426 933 76;
  • 42) 0.426 933 76 × 2 = 0 + 0.853 867 52;
  • 43) 0.853 867 52 × 2 = 1 + 0.707 735 04;
  • 44) 0.707 735 04 × 2 = 1 + 0.415 470 08;
  • 45) 0.415 470 08 × 2 = 0 + 0.830 940 16;
  • 46) 0.830 940 16 × 2 = 1 + 0.661 880 32;
  • 47) 0.661 880 32 × 2 = 1 + 0.323 760 64;
  • 48) 0.323 760 64 × 2 = 0 + 0.647 521 28;
  • 49) 0.647 521 28 × 2 = 1 + 0.295 042 56;
  • 50) 0.295 042 56 × 2 = 0 + 0.590 085 12;
  • 51) 0.590 085 12 × 2 = 1 + 0.180 170 24;
  • 52) 0.180 170 24 × 2 = 0 + 0.360 340 48;
  • 53) 0.360 340 48 × 2 = 0 + 0.720 680 96;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.333 331 13(10) =


0.0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0(2)

5. Positive number before normalization:

20.333 331 13(10) =


1 0100.0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 4 positions to the left, so that only one non zero digit remains to the left of it:


20.333 331 13(10) =


1 0100.0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0(2) =


1 0100.0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0(2) × 20 =


1.0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0(2) × 24


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 4


Mantissa (not normalized):
1.0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1010 0


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


4 + 2(11-1) - 1 =


(4 + 1 023)(10) =


1 027(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 027 ÷ 2 = 513 + 1;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1027(10) =


100 0000 0011(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110 1 0100 =


0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0011


Mantissa (52 bits) =
0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110


Decimal number 20.333 331 13 converted to 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0011 - 0100 0101 0101 0101 0101 0011 0000 0101 1110 0001 0110 1011 0110


How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100