64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 17 379 402 149 791 795 594 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 17 379 402 149 791 795 594(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 17 379 402 149 791 795 594 ÷ 2 = 8 689 701 074 895 897 797 + 0;
  • 8 689 701 074 895 897 797 ÷ 2 = 4 344 850 537 447 948 898 + 1;
  • 4 344 850 537 447 948 898 ÷ 2 = 2 172 425 268 723 974 449 + 0;
  • 2 172 425 268 723 974 449 ÷ 2 = 1 086 212 634 361 987 224 + 1;
  • 1 086 212 634 361 987 224 ÷ 2 = 543 106 317 180 993 612 + 0;
  • 543 106 317 180 993 612 ÷ 2 = 271 553 158 590 496 806 + 0;
  • 271 553 158 590 496 806 ÷ 2 = 135 776 579 295 248 403 + 0;
  • 135 776 579 295 248 403 ÷ 2 = 67 888 289 647 624 201 + 1;
  • 67 888 289 647 624 201 ÷ 2 = 33 944 144 823 812 100 + 1;
  • 33 944 144 823 812 100 ÷ 2 = 16 972 072 411 906 050 + 0;
  • 16 972 072 411 906 050 ÷ 2 = 8 486 036 205 953 025 + 0;
  • 8 486 036 205 953 025 ÷ 2 = 4 243 018 102 976 512 + 1;
  • 4 243 018 102 976 512 ÷ 2 = 2 121 509 051 488 256 + 0;
  • 2 121 509 051 488 256 ÷ 2 = 1 060 754 525 744 128 + 0;
  • 1 060 754 525 744 128 ÷ 2 = 530 377 262 872 064 + 0;
  • 530 377 262 872 064 ÷ 2 = 265 188 631 436 032 + 0;
  • 265 188 631 436 032 ÷ 2 = 132 594 315 718 016 + 0;
  • 132 594 315 718 016 ÷ 2 = 66 297 157 859 008 + 0;
  • 66 297 157 859 008 ÷ 2 = 33 148 578 929 504 + 0;
  • 33 148 578 929 504 ÷ 2 = 16 574 289 464 752 + 0;
  • 16 574 289 464 752 ÷ 2 = 8 287 144 732 376 + 0;
  • 8 287 144 732 376 ÷ 2 = 4 143 572 366 188 + 0;
  • 4 143 572 366 188 ÷ 2 = 2 071 786 183 094 + 0;
  • 2 071 786 183 094 ÷ 2 = 1 035 893 091 547 + 0;
  • 1 035 893 091 547 ÷ 2 = 517 946 545 773 + 1;
  • 517 946 545 773 ÷ 2 = 258 973 272 886 + 1;
  • 258 973 272 886 ÷ 2 = 129 486 636 443 + 0;
  • 129 486 636 443 ÷ 2 = 64 743 318 221 + 1;
  • 64 743 318 221 ÷ 2 = 32 371 659 110 + 1;
  • 32 371 659 110 ÷ 2 = 16 185 829 555 + 0;
  • 16 185 829 555 ÷ 2 = 8 092 914 777 + 1;
  • 8 092 914 777 ÷ 2 = 4 046 457 388 + 1;
  • 4 046 457 388 ÷ 2 = 2 023 228 694 + 0;
  • 2 023 228 694 ÷ 2 = 1 011 614 347 + 0;
  • 1 011 614 347 ÷ 2 = 505 807 173 + 1;
  • 505 807 173 ÷ 2 = 252 903 586 + 1;
  • 252 903 586 ÷ 2 = 126 451 793 + 0;
  • 126 451 793 ÷ 2 = 63 225 896 + 1;
  • 63 225 896 ÷ 2 = 31 612 948 + 0;
  • 31 612 948 ÷ 2 = 15 806 474 + 0;
  • 15 806 474 ÷ 2 = 7 903 237 + 0;
  • 7 903 237 ÷ 2 = 3 951 618 + 1;
  • 3 951 618 ÷ 2 = 1 975 809 + 0;
  • 1 975 809 ÷ 2 = 987 904 + 1;
  • 987 904 ÷ 2 = 493 952 + 0;
  • 493 952 ÷ 2 = 246 976 + 0;
  • 246 976 ÷ 2 = 123 488 + 0;
  • 123 488 ÷ 2 = 61 744 + 0;
  • 61 744 ÷ 2 = 30 872 + 0;
  • 30 872 ÷ 2 = 15 436 + 0;
  • 15 436 ÷ 2 = 7 718 + 0;
  • 7 718 ÷ 2 = 3 859 + 0;
  • 3 859 ÷ 2 = 1 929 + 1;
  • 1 929 ÷ 2 = 964 + 1;
  • 964 ÷ 2 = 482 + 0;
  • 482 ÷ 2 = 241 + 0;
  • 241 ÷ 2 = 120 + 1;
  • 120 ÷ 2 = 60 + 0;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


17 379 402 149 791 795 594(10) =


1111 0001 0011 0000 0000 1010 0010 1100 1101 1011 0000 0000 0000 1001 1000 1010(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


17 379 402 149 791 795 594(10) =


1111 0001 0011 0000 0000 1010 0010 1100 1101 1011 0000 0000 0000 1001 1000 1010(2) =


1111 0001 0011 0000 0000 1010 0010 1100 1101 1011 0000 0000 0000 1001 1000 1010(2) × 20 =


1.1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001 0011 0001 010(2) × 263


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001 0011 0001 010


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


63 + 2(11-1) - 1 =


(63 + 1 023)(10) =


1 086(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 086 ÷ 2 = 543 + 0;
  • 543 ÷ 2 = 271 + 1;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1086(10) =


100 0011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001 001 1000 1010 =


1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1110


Mantissa (52 bits) =
1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001


The base ten decimal number 17 379 402 149 791 795 594 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1110 - 1110 0010 0110 0000 0001 0100 0101 1001 1011 0110 0000 0000 0001

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -147.328 127 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 12:00 UTC (GMT)
Number 524 145 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 12:00 UTC (GMT)
Number 71 346 482 151 056 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 12:00 UTC (GMT)
Number 3 524 511 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 12:00 UTC (GMT)
Number -2 048 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 12:00 UTC (GMT)
Number 23 895 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 11:59 UTC (GMT)
Number 18 446 673 704 965 373 916 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 11:59 UTC (GMT)
Number 0.197 265 627 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 11:59 UTC (GMT)
Number 124.33 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 11:59 UTC (GMT)
Number -9.065 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 11:59 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100