64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 16 045 690 984 300 797 621 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 16 045 690 984 300 797 621(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 16 045 690 984 300 797 621 ÷ 2 = 8 022 845 492 150 398 810 + 1;
  • 8 022 845 492 150 398 810 ÷ 2 = 4 011 422 746 075 199 405 + 0;
  • 4 011 422 746 075 199 405 ÷ 2 = 2 005 711 373 037 599 702 + 1;
  • 2 005 711 373 037 599 702 ÷ 2 = 1 002 855 686 518 799 851 + 0;
  • 1 002 855 686 518 799 851 ÷ 2 = 501 427 843 259 399 925 + 1;
  • 501 427 843 259 399 925 ÷ 2 = 250 713 921 629 699 962 + 1;
  • 250 713 921 629 699 962 ÷ 2 = 125 356 960 814 849 981 + 0;
  • 125 356 960 814 849 981 ÷ 2 = 62 678 480 407 424 990 + 1;
  • 62 678 480 407 424 990 ÷ 2 = 31 339 240 203 712 495 + 0;
  • 31 339 240 203 712 495 ÷ 2 = 15 669 620 101 856 247 + 1;
  • 15 669 620 101 856 247 ÷ 2 = 7 834 810 050 928 123 + 1;
  • 7 834 810 050 928 123 ÷ 2 = 3 917 405 025 464 061 + 1;
  • 3 917 405 025 464 061 ÷ 2 = 1 958 702 512 732 030 + 1;
  • 1 958 702 512 732 030 ÷ 2 = 979 351 256 366 015 + 0;
  • 979 351 256 366 015 ÷ 2 = 489 675 628 183 007 + 1;
  • 489 675 628 183 007 ÷ 2 = 244 837 814 091 503 + 1;
  • 244 837 814 091 503 ÷ 2 = 122 418 907 045 751 + 1;
  • 122 418 907 045 751 ÷ 2 = 61 209 453 522 875 + 1;
  • 61 209 453 522 875 ÷ 2 = 30 604 726 761 437 + 1;
  • 30 604 726 761 437 ÷ 2 = 15 302 363 380 718 + 1;
  • 15 302 363 380 718 ÷ 2 = 7 651 181 690 359 + 0;
  • 7 651 181 690 359 ÷ 2 = 3 825 590 845 179 + 1;
  • 3 825 590 845 179 ÷ 2 = 1 912 795 422 589 + 1;
  • 1 912 795 422 589 ÷ 2 = 956 397 711 294 + 1;
  • 956 397 711 294 ÷ 2 = 478 198 855 647 + 0;
  • 478 198 855 647 ÷ 2 = 239 099 427 823 + 1;
  • 239 099 427 823 ÷ 2 = 119 549 713 911 + 1;
  • 119 549 713 911 ÷ 2 = 59 774 856 955 + 1;
  • 59 774 856 955 ÷ 2 = 29 887 428 477 + 1;
  • 29 887 428 477 ÷ 2 = 14 943 714 238 + 1;
  • 14 943 714 238 ÷ 2 = 7 471 857 119 + 0;
  • 7 471 857 119 ÷ 2 = 3 735 928 559 + 1;
  • 3 735 928 559 ÷ 2 = 1 867 964 279 + 1;
  • 1 867 964 279 ÷ 2 = 933 982 139 + 1;
  • 933 982 139 ÷ 2 = 466 991 069 + 1;
  • 466 991 069 ÷ 2 = 233 495 534 + 1;
  • 233 495 534 ÷ 2 = 116 747 767 + 0;
  • 116 747 767 ÷ 2 = 58 373 883 + 1;
  • 58 373 883 ÷ 2 = 29 186 941 + 1;
  • 29 186 941 ÷ 2 = 14 593 470 + 1;
  • 14 593 470 ÷ 2 = 7 296 735 + 0;
  • 7 296 735 ÷ 2 = 3 648 367 + 1;
  • 3 648 367 ÷ 2 = 1 824 183 + 1;
  • 1 824 183 ÷ 2 = 912 091 + 1;
  • 912 091 ÷ 2 = 456 045 + 1;
  • 456 045 ÷ 2 = 228 022 + 1;
  • 228 022 ÷ 2 = 114 011 + 0;
  • 114 011 ÷ 2 = 57 005 + 1;
  • 57 005 ÷ 2 = 28 502 + 1;
  • 28 502 ÷ 2 = 14 251 + 0;
  • 14 251 ÷ 2 = 7 125 + 1;
  • 7 125 ÷ 2 = 3 562 + 1;
  • 3 562 ÷ 2 = 1 781 + 0;
  • 1 781 ÷ 2 = 890 + 1;
  • 890 ÷ 2 = 445 + 0;
  • 445 ÷ 2 = 222 + 1;
  • 222 ÷ 2 = 111 + 0;
  • 111 ÷ 2 = 55 + 1;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


16 045 690 984 300 797 621(10) =


1101 1110 1010 1101 1011 1110 1110 1111 1011 1110 1110 1111 1101 1110 1011 0101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


16 045 690 984 300 797 621(10) =


1101 1110 1010 1101 1011 1110 1110 1111 1011 1110 1110 1111 1101 1110 1011 0101(2) =


1101 1110 1010 1101 1011 1110 1110 1111 1011 1110 1110 1111 1101 1110 1011 0101(2) × 20 =


1.1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011 1101 0110 101(2) × 263


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011 1101 0110 101


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


63 + 2(11-1) - 1 =


(63 + 1 023)(10) =


1 086(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 086 ÷ 2 = 543 + 0;
  • 543 ÷ 2 = 271 + 1;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1086(10) =


100 0011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011 110 1011 0101 =


1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1110


Mantissa (52 bits) =
1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011


The base ten decimal number 16 045 690 984 300 797 621 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1110 - 1011 1101 0101 1011 0111 1101 1101 1111 0111 1101 1101 1111 1011

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 119 916 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:44 UTC (GMT)
Number 975.8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:44 UTC (GMT)
Number 0.028 32 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:44 UTC (GMT)
Number 671 900 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:44 UTC (GMT)
Number 60 418 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
Number -0.000 800 867 019 620 224 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
Number 1 000 000 100 000 100 111 011 011 001 014 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
Number 492 609 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
Number 876 001 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
Number 1 000 001 110 011 099 999 999 999 999 928 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 18:43 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100