64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 123 456 789 455 648 494 465 546 494 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 123 456 789 455 648 494 465 546 494(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 123 456 789 455 648 494 465 546 494 ÷ 2 = 61 728 394 727 824 247 232 773 247 + 0;
  • 61 728 394 727 824 247 232 773 247 ÷ 2 = 30 864 197 363 912 123 616 386 623 + 1;
  • 30 864 197 363 912 123 616 386 623 ÷ 2 = 15 432 098 681 956 061 808 193 311 + 1;
  • 15 432 098 681 956 061 808 193 311 ÷ 2 = 7 716 049 340 978 030 904 096 655 + 1;
  • 7 716 049 340 978 030 904 096 655 ÷ 2 = 3 858 024 670 489 015 452 048 327 + 1;
  • 3 858 024 670 489 015 452 048 327 ÷ 2 = 1 929 012 335 244 507 726 024 163 + 1;
  • 1 929 012 335 244 507 726 024 163 ÷ 2 = 964 506 167 622 253 863 012 081 + 1;
  • 964 506 167 622 253 863 012 081 ÷ 2 = 482 253 083 811 126 931 506 040 + 1;
  • 482 253 083 811 126 931 506 040 ÷ 2 = 241 126 541 905 563 465 753 020 + 0;
  • 241 126 541 905 563 465 753 020 ÷ 2 = 120 563 270 952 781 732 876 510 + 0;
  • 120 563 270 952 781 732 876 510 ÷ 2 = 60 281 635 476 390 866 438 255 + 0;
  • 60 281 635 476 390 866 438 255 ÷ 2 = 30 140 817 738 195 433 219 127 + 1;
  • 30 140 817 738 195 433 219 127 ÷ 2 = 15 070 408 869 097 716 609 563 + 1;
  • 15 070 408 869 097 716 609 563 ÷ 2 = 7 535 204 434 548 858 304 781 + 1;
  • 7 535 204 434 548 858 304 781 ÷ 2 = 3 767 602 217 274 429 152 390 + 1;
  • 3 767 602 217 274 429 152 390 ÷ 2 = 1 883 801 108 637 214 576 195 + 0;
  • 1 883 801 108 637 214 576 195 ÷ 2 = 941 900 554 318 607 288 097 + 1;
  • 941 900 554 318 607 288 097 ÷ 2 = 470 950 277 159 303 644 048 + 1;
  • 470 950 277 159 303 644 048 ÷ 2 = 235 475 138 579 651 822 024 + 0;
  • 235 475 138 579 651 822 024 ÷ 2 = 117 737 569 289 825 911 012 + 0;
  • 117 737 569 289 825 911 012 ÷ 2 = 58 868 784 644 912 955 506 + 0;
  • 58 868 784 644 912 955 506 ÷ 2 = 29 434 392 322 456 477 753 + 0;
  • 29 434 392 322 456 477 753 ÷ 2 = 14 717 196 161 228 238 876 + 1;
  • 14 717 196 161 228 238 876 ÷ 2 = 7 358 598 080 614 119 438 + 0;
  • 7 358 598 080 614 119 438 ÷ 2 = 3 679 299 040 307 059 719 + 0;
  • 3 679 299 040 307 059 719 ÷ 2 = 1 839 649 520 153 529 859 + 1;
  • 1 839 649 520 153 529 859 ÷ 2 = 919 824 760 076 764 929 + 1;
  • 919 824 760 076 764 929 ÷ 2 = 459 912 380 038 382 464 + 1;
  • 459 912 380 038 382 464 ÷ 2 = 229 956 190 019 191 232 + 0;
  • 229 956 190 019 191 232 ÷ 2 = 114 978 095 009 595 616 + 0;
  • 114 978 095 009 595 616 ÷ 2 = 57 489 047 504 797 808 + 0;
  • 57 489 047 504 797 808 ÷ 2 = 28 744 523 752 398 904 + 0;
  • 28 744 523 752 398 904 ÷ 2 = 14 372 261 876 199 452 + 0;
  • 14 372 261 876 199 452 ÷ 2 = 7 186 130 938 099 726 + 0;
  • 7 186 130 938 099 726 ÷ 2 = 3 593 065 469 049 863 + 0;
  • 3 593 065 469 049 863 ÷ 2 = 1 796 532 734 524 931 + 1;
  • 1 796 532 734 524 931 ÷ 2 = 898 266 367 262 465 + 1;
  • 898 266 367 262 465 ÷ 2 = 449 133 183 631 232 + 1;
  • 449 133 183 631 232 ÷ 2 = 224 566 591 815 616 + 0;
  • 224 566 591 815 616 ÷ 2 = 112 283 295 907 808 + 0;
  • 112 283 295 907 808 ÷ 2 = 56 141 647 953 904 + 0;
  • 56 141 647 953 904 ÷ 2 = 28 070 823 976 952 + 0;
  • 28 070 823 976 952 ÷ 2 = 14 035 411 988 476 + 0;
  • 14 035 411 988 476 ÷ 2 = 7 017 705 994 238 + 0;
  • 7 017 705 994 238 ÷ 2 = 3 508 852 997 119 + 0;
  • 3 508 852 997 119 ÷ 2 = 1 754 426 498 559 + 1;
  • 1 754 426 498 559 ÷ 2 = 877 213 249 279 + 1;
  • 877 213 249 279 ÷ 2 = 438 606 624 639 + 1;
  • 438 606 624 639 ÷ 2 = 219 303 312 319 + 1;
  • 219 303 312 319 ÷ 2 = 109 651 656 159 + 1;
  • 109 651 656 159 ÷ 2 = 54 825 828 079 + 1;
  • 54 825 828 079 ÷ 2 = 27 412 914 039 + 1;
  • 27 412 914 039 ÷ 2 = 13 706 457 019 + 1;
  • 13 706 457 019 ÷ 2 = 6 853 228 509 + 1;
  • 6 853 228 509 ÷ 2 = 3 426 614 254 + 1;
  • 3 426 614 254 ÷ 2 = 1 713 307 127 + 0;
  • 1 713 307 127 ÷ 2 = 856 653 563 + 1;
  • 856 653 563 ÷ 2 = 428 326 781 + 1;
  • 428 326 781 ÷ 2 = 214 163 390 + 1;
  • 214 163 390 ÷ 2 = 107 081 695 + 0;
  • 107 081 695 ÷ 2 = 53 540 847 + 1;
  • 53 540 847 ÷ 2 = 26 770 423 + 1;
  • 26 770 423 ÷ 2 = 13 385 211 + 1;
  • 13 385 211 ÷ 2 = 6 692 605 + 1;
  • 6 692 605 ÷ 2 = 3 346 302 + 1;
  • 3 346 302 ÷ 2 = 1 673 151 + 0;
  • 1 673 151 ÷ 2 = 836 575 + 1;
  • 836 575 ÷ 2 = 418 287 + 1;
  • 418 287 ÷ 2 = 209 143 + 1;
  • 209 143 ÷ 2 = 104 571 + 1;
  • 104 571 ÷ 2 = 52 285 + 1;
  • 52 285 ÷ 2 = 26 142 + 1;
  • 26 142 ÷ 2 = 13 071 + 0;
  • 13 071 ÷ 2 = 6 535 + 1;
  • 6 535 ÷ 2 = 3 267 + 1;
  • 3 267 ÷ 2 = 1 633 + 1;
  • 1 633 ÷ 2 = 816 + 1;
  • 816 ÷ 2 = 408 + 0;
  • 408 ÷ 2 = 204 + 0;
  • 204 ÷ 2 = 102 + 0;
  • 102 ÷ 2 = 51 + 0;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


123 456 789 455 648 494 465 546 494(10) =


110 0110 0001 1110 1111 1101 1111 0111 0111 1111 1110 0000 0011 1000 0000 1110 0100 0011 0111 1000 1111 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 86 positions to the left, so that only one non zero digit remains to the left of it:


123 456 789 455 648 494 465 546 494(10) =


110 0110 0001 1110 1111 1101 1111 0111 0111 1111 1110 0000 0011 1000 0000 1110 0100 0011 0111 1000 1111 1110(2) =


110 0110 0001 1110 1111 1101 1111 0111 0111 1111 1110 0000 0011 1000 0000 1110 0100 0011 0111 1000 1111 1110(2) × 20 =


1.1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110 0000 0011 1001 0000 1101 1110 0011 1111 10(2) × 286


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 86


Mantissa (not normalized):
1.1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110 0000 0011 1001 0000 1101 1110 0011 1111 10


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


86 + 2(11-1) - 1 =


(86 + 1 023)(10) =


1 109(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 109 ÷ 2 = 554 + 1;
  • 554 ÷ 2 = 277 + 0;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1109(10) =


100 0101 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110 00 0000 1110 0100 0011 0111 1000 1111 1110 =


1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0101 0101


Mantissa (52 bits) =
1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110


The base ten decimal number 123 456 789 455 648 494 465 546 494 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0101 0101 - 1001 1000 0111 1011 1111 0111 1101 1101 1111 1111 1000 0000 1110

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.48 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 35 239 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 1 026 351 260 000 000 007 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 0.666 406 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number -3.004 579 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 112.336 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 10 000 000 000 000 002 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 60 110 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 530.066 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
Number 2 345 584 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 30 22:31 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100