64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 11 000 000 110 110 011 001 100 110 011 010 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 11 000 000 110 110 011 001 100 110 011 010(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 000 110 110 011 001 100 110 011 010 ÷ 2 = 5 500 000 055 055 005 500 550 055 005 505 + 0;
  • 5 500 000 055 055 005 500 550 055 005 505 ÷ 2 = 2 750 000 027 527 502 750 275 027 502 752 + 1;
  • 2 750 000 027 527 502 750 275 027 502 752 ÷ 2 = 1 375 000 013 763 751 375 137 513 751 376 + 0;
  • 1 375 000 013 763 751 375 137 513 751 376 ÷ 2 = 687 500 006 881 875 687 568 756 875 688 + 0;
  • 687 500 006 881 875 687 568 756 875 688 ÷ 2 = 343 750 003 440 937 843 784 378 437 844 + 0;
  • 343 750 003 440 937 843 784 378 437 844 ÷ 2 = 171 875 001 720 468 921 892 189 218 922 + 0;
  • 171 875 001 720 468 921 892 189 218 922 ÷ 2 = 85 937 500 860 234 460 946 094 609 461 + 0;
  • 85 937 500 860 234 460 946 094 609 461 ÷ 2 = 42 968 750 430 117 230 473 047 304 730 + 1;
  • 42 968 750 430 117 230 473 047 304 730 ÷ 2 = 21 484 375 215 058 615 236 523 652 365 + 0;
  • 21 484 375 215 058 615 236 523 652 365 ÷ 2 = 10 742 187 607 529 307 618 261 826 182 + 1;
  • 10 742 187 607 529 307 618 261 826 182 ÷ 2 = 5 371 093 803 764 653 809 130 913 091 + 0;
  • 5 371 093 803 764 653 809 130 913 091 ÷ 2 = 2 685 546 901 882 326 904 565 456 545 + 1;
  • 2 685 546 901 882 326 904 565 456 545 ÷ 2 = 1 342 773 450 941 163 452 282 728 272 + 1;
  • 1 342 773 450 941 163 452 282 728 272 ÷ 2 = 671 386 725 470 581 726 141 364 136 + 0;
  • 671 386 725 470 581 726 141 364 136 ÷ 2 = 335 693 362 735 290 863 070 682 068 + 0;
  • 335 693 362 735 290 863 070 682 068 ÷ 2 = 167 846 681 367 645 431 535 341 034 + 0;
  • 167 846 681 367 645 431 535 341 034 ÷ 2 = 83 923 340 683 822 715 767 670 517 + 0;
  • 83 923 340 683 822 715 767 670 517 ÷ 2 = 41 961 670 341 911 357 883 835 258 + 1;
  • 41 961 670 341 911 357 883 835 258 ÷ 2 = 20 980 835 170 955 678 941 917 629 + 0;
  • 20 980 835 170 955 678 941 917 629 ÷ 2 = 10 490 417 585 477 839 470 958 814 + 1;
  • 10 490 417 585 477 839 470 958 814 ÷ 2 = 5 245 208 792 738 919 735 479 407 + 0;
  • 5 245 208 792 738 919 735 479 407 ÷ 2 = 2 622 604 396 369 459 867 739 703 + 1;
  • 2 622 604 396 369 459 867 739 703 ÷ 2 = 1 311 302 198 184 729 933 869 851 + 1;
  • 1 311 302 198 184 729 933 869 851 ÷ 2 = 655 651 099 092 364 966 934 925 + 1;
  • 655 651 099 092 364 966 934 925 ÷ 2 = 327 825 549 546 182 483 467 462 + 1;
  • 327 825 549 546 182 483 467 462 ÷ 2 = 163 912 774 773 091 241 733 731 + 0;
  • 163 912 774 773 091 241 733 731 ÷ 2 = 81 956 387 386 545 620 866 865 + 1;
  • 81 956 387 386 545 620 866 865 ÷ 2 = 40 978 193 693 272 810 433 432 + 1;
  • 40 978 193 693 272 810 433 432 ÷ 2 = 20 489 096 846 636 405 216 716 + 0;
  • 20 489 096 846 636 405 216 716 ÷ 2 = 10 244 548 423 318 202 608 358 + 0;
  • 10 244 548 423 318 202 608 358 ÷ 2 = 5 122 274 211 659 101 304 179 + 0;
  • 5 122 274 211 659 101 304 179 ÷ 2 = 2 561 137 105 829 550 652 089 + 1;
  • 2 561 137 105 829 550 652 089 ÷ 2 = 1 280 568 552 914 775 326 044 + 1;
  • 1 280 568 552 914 775 326 044 ÷ 2 = 640 284 276 457 387 663 022 + 0;
  • 640 284 276 457 387 663 022 ÷ 2 = 320 142 138 228 693 831 511 + 0;
  • 320 142 138 228 693 831 511 ÷ 2 = 160 071 069 114 346 915 755 + 1;
  • 160 071 069 114 346 915 755 ÷ 2 = 80 035 534 557 173 457 877 + 1;
  • 80 035 534 557 173 457 877 ÷ 2 = 40 017 767 278 586 728 938 + 1;
  • 40 017 767 278 586 728 938 ÷ 2 = 20 008 883 639 293 364 469 + 0;
  • 20 008 883 639 293 364 469 ÷ 2 = 10 004 441 819 646 682 234 + 1;
  • 10 004 441 819 646 682 234 ÷ 2 = 5 002 220 909 823 341 117 + 0;
  • 5 002 220 909 823 341 117 ÷ 2 = 2 501 110 454 911 670 558 + 1;
  • 2 501 110 454 911 670 558 ÷ 2 = 1 250 555 227 455 835 279 + 0;
  • 1 250 555 227 455 835 279 ÷ 2 = 625 277 613 727 917 639 + 1;
  • 625 277 613 727 917 639 ÷ 2 = 312 638 806 863 958 819 + 1;
  • 312 638 806 863 958 819 ÷ 2 = 156 319 403 431 979 409 + 1;
  • 156 319 403 431 979 409 ÷ 2 = 78 159 701 715 989 704 + 1;
  • 78 159 701 715 989 704 ÷ 2 = 39 079 850 857 994 852 + 0;
  • 39 079 850 857 994 852 ÷ 2 = 19 539 925 428 997 426 + 0;
  • 19 539 925 428 997 426 ÷ 2 = 9 769 962 714 498 713 + 0;
  • 9 769 962 714 498 713 ÷ 2 = 4 884 981 357 249 356 + 1;
  • 4 884 981 357 249 356 ÷ 2 = 2 442 490 678 624 678 + 0;
  • 2 442 490 678 624 678 ÷ 2 = 1 221 245 339 312 339 + 0;
  • 1 221 245 339 312 339 ÷ 2 = 610 622 669 656 169 + 1;
  • 610 622 669 656 169 ÷ 2 = 305 311 334 828 084 + 1;
  • 305 311 334 828 084 ÷ 2 = 152 655 667 414 042 + 0;
  • 152 655 667 414 042 ÷ 2 = 76 327 833 707 021 + 0;
  • 76 327 833 707 021 ÷ 2 = 38 163 916 853 510 + 1;
  • 38 163 916 853 510 ÷ 2 = 19 081 958 426 755 + 0;
  • 19 081 958 426 755 ÷ 2 = 9 540 979 213 377 + 1;
  • 9 540 979 213 377 ÷ 2 = 4 770 489 606 688 + 1;
  • 4 770 489 606 688 ÷ 2 = 2 385 244 803 344 + 0;
  • 2 385 244 803 344 ÷ 2 = 1 192 622 401 672 + 0;
  • 1 192 622 401 672 ÷ 2 = 596 311 200 836 + 0;
  • 596 311 200 836 ÷ 2 = 298 155 600 418 + 0;
  • 298 155 600 418 ÷ 2 = 149 077 800 209 + 0;
  • 149 077 800 209 ÷ 2 = 74 538 900 104 + 1;
  • 74 538 900 104 ÷ 2 = 37 269 450 052 + 0;
  • 37 269 450 052 ÷ 2 = 18 634 725 026 + 0;
  • 18 634 725 026 ÷ 2 = 9 317 362 513 + 0;
  • 9 317 362 513 ÷ 2 = 4 658 681 256 + 1;
  • 4 658 681 256 ÷ 2 = 2 329 340 628 + 0;
  • 2 329 340 628 ÷ 2 = 1 164 670 314 + 0;
  • 1 164 670 314 ÷ 2 = 582 335 157 + 0;
  • 582 335 157 ÷ 2 = 291 167 578 + 1;
  • 291 167 578 ÷ 2 = 145 583 789 + 0;
  • 145 583 789 ÷ 2 = 72 791 894 + 1;
  • 72 791 894 ÷ 2 = 36 395 947 + 0;
  • 36 395 947 ÷ 2 = 18 197 973 + 1;
  • 18 197 973 ÷ 2 = 9 098 986 + 1;
  • 9 098 986 ÷ 2 = 4 549 493 + 0;
  • 4 549 493 ÷ 2 = 2 274 746 + 1;
  • 2 274 746 ÷ 2 = 1 137 373 + 0;
  • 1 137 373 ÷ 2 = 568 686 + 1;
  • 568 686 ÷ 2 = 284 343 + 0;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 000 110 110 011 001 100 110 011 010(10) =


1000 1010 1101 0110 1110 1010 1101 0100 0100 0100 0001 1010 0110 0100 0111 1010 1011 1001 1000 1101 1110 1010 0001 1010 1000 0010(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 000 110 110 011 001 100 110 011 010(10) =


1000 1010 1101 0110 1110 1010 1101 0100 0100 0100 0001 1010 0110 0100 0111 1010 1011 1001 1000 1101 1110 1010 0001 1010 1000 0010(2) =


1000 1010 1101 0110 1110 1010 1101 0100 0100 0100 0001 1010 0110 0100 0111 1010 1011 1001 1000 1101 1110 1010 0001 1010 1000 0010(2) × 20 =


1.0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100 1000 1111 0101 0111 0011 0001 1011 1101 0100 0011 0101 0000 010(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100 1000 1111 0101 0111 0011 0001 1011 1101 0100 0011 0101 0000 010


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


103 + 2(11-1) - 1 =


(103 + 1 023)(10) =


1 126(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 126 ÷ 2 = 563 + 0;
  • 563 ÷ 2 = 281 + 1;
  • 281 ÷ 2 = 140 + 1;
  • 140 ÷ 2 = 70 + 0;
  • 70 ÷ 2 = 35 + 0;
  • 35 ÷ 2 = 17 + 1;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1126(10) =


100 0110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100 100 0111 1010 1011 1001 1000 1101 1110 1010 0001 1010 1000 0010 =


0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0110 0110


Mantissa (52 bits) =
0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100


The base ten decimal number 11 000 000 110 110 011 001 100 110 011 010 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0110 0110 - 0001 0101 1010 1101 1101 0101 1010 1000 1000 1000 0011 0100 1100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 456 392 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 41.06 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number -9 123 123 122 999 999 980 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 67 449.349 126 820 612 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 158.3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 3 999 999 999 974 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 400.124 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 24.384 765 629 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number 1 886 744 391 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
Number -1 059 916 523 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 00:37 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100