64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 100 111 101 111 000 000 000 000 000 047 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 100 111 101 111 000 000 000 000 000 047(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 100 111 101 111 000 000 000 000 000 047 ÷ 2 = 50 055 550 555 500 000 000 000 000 023 + 1;
  • 50 055 550 555 500 000 000 000 000 023 ÷ 2 = 25 027 775 277 750 000 000 000 000 011 + 1;
  • 25 027 775 277 750 000 000 000 000 011 ÷ 2 = 12 513 887 638 875 000 000 000 000 005 + 1;
  • 12 513 887 638 875 000 000 000 000 005 ÷ 2 = 6 256 943 819 437 500 000 000 000 002 + 1;
  • 6 256 943 819 437 500 000 000 000 002 ÷ 2 = 3 128 471 909 718 750 000 000 000 001 + 0;
  • 3 128 471 909 718 750 000 000 000 001 ÷ 2 = 1 564 235 954 859 375 000 000 000 000 + 1;
  • 1 564 235 954 859 375 000 000 000 000 ÷ 2 = 782 117 977 429 687 500 000 000 000 + 0;
  • 782 117 977 429 687 500 000 000 000 ÷ 2 = 391 058 988 714 843 750 000 000 000 + 0;
  • 391 058 988 714 843 750 000 000 000 ÷ 2 = 195 529 494 357 421 875 000 000 000 + 0;
  • 195 529 494 357 421 875 000 000 000 ÷ 2 = 97 764 747 178 710 937 500 000 000 + 0;
  • 97 764 747 178 710 937 500 000 000 ÷ 2 = 48 882 373 589 355 468 750 000 000 + 0;
  • 48 882 373 589 355 468 750 000 000 ÷ 2 = 24 441 186 794 677 734 375 000 000 + 0;
  • 24 441 186 794 677 734 375 000 000 ÷ 2 = 12 220 593 397 338 867 187 500 000 + 0;
  • 12 220 593 397 338 867 187 500 000 ÷ 2 = 6 110 296 698 669 433 593 750 000 + 0;
  • 6 110 296 698 669 433 593 750 000 ÷ 2 = 3 055 148 349 334 716 796 875 000 + 0;
  • 3 055 148 349 334 716 796 875 000 ÷ 2 = 1 527 574 174 667 358 398 437 500 + 0;
  • 1 527 574 174 667 358 398 437 500 ÷ 2 = 763 787 087 333 679 199 218 750 + 0;
  • 763 787 087 333 679 199 218 750 ÷ 2 = 381 893 543 666 839 599 609 375 + 0;
  • 381 893 543 666 839 599 609 375 ÷ 2 = 190 946 771 833 419 799 804 687 + 1;
  • 190 946 771 833 419 799 804 687 ÷ 2 = 95 473 385 916 709 899 902 343 + 1;
  • 95 473 385 916 709 899 902 343 ÷ 2 = 47 736 692 958 354 949 951 171 + 1;
  • 47 736 692 958 354 949 951 171 ÷ 2 = 23 868 346 479 177 474 975 585 + 1;
  • 23 868 346 479 177 474 975 585 ÷ 2 = 11 934 173 239 588 737 487 792 + 1;
  • 11 934 173 239 588 737 487 792 ÷ 2 = 5 967 086 619 794 368 743 896 + 0;
  • 5 967 086 619 794 368 743 896 ÷ 2 = 2 983 543 309 897 184 371 948 + 0;
  • 2 983 543 309 897 184 371 948 ÷ 2 = 1 491 771 654 948 592 185 974 + 0;
  • 1 491 771 654 948 592 185 974 ÷ 2 = 745 885 827 474 296 092 987 + 0;
  • 745 885 827 474 296 092 987 ÷ 2 = 372 942 913 737 148 046 493 + 1;
  • 372 942 913 737 148 046 493 ÷ 2 = 186 471 456 868 574 023 246 + 1;
  • 186 471 456 868 574 023 246 ÷ 2 = 93 235 728 434 287 011 623 + 0;
  • 93 235 728 434 287 011 623 ÷ 2 = 46 617 864 217 143 505 811 + 1;
  • 46 617 864 217 143 505 811 ÷ 2 = 23 308 932 108 571 752 905 + 1;
  • 23 308 932 108 571 752 905 ÷ 2 = 11 654 466 054 285 876 452 + 1;
  • 11 654 466 054 285 876 452 ÷ 2 = 5 827 233 027 142 938 226 + 0;
  • 5 827 233 027 142 938 226 ÷ 2 = 2 913 616 513 571 469 113 + 0;
  • 2 913 616 513 571 469 113 ÷ 2 = 1 456 808 256 785 734 556 + 1;
  • 1 456 808 256 785 734 556 ÷ 2 = 728 404 128 392 867 278 + 0;
  • 728 404 128 392 867 278 ÷ 2 = 364 202 064 196 433 639 + 0;
  • 364 202 064 196 433 639 ÷ 2 = 182 101 032 098 216 819 + 1;
  • 182 101 032 098 216 819 ÷ 2 = 91 050 516 049 108 409 + 1;
  • 91 050 516 049 108 409 ÷ 2 = 45 525 258 024 554 204 + 1;
  • 45 525 258 024 554 204 ÷ 2 = 22 762 629 012 277 102 + 0;
  • 22 762 629 012 277 102 ÷ 2 = 11 381 314 506 138 551 + 0;
  • 11 381 314 506 138 551 ÷ 2 = 5 690 657 253 069 275 + 1;
  • 5 690 657 253 069 275 ÷ 2 = 2 845 328 626 534 637 + 1;
  • 2 845 328 626 534 637 ÷ 2 = 1 422 664 313 267 318 + 1;
  • 1 422 664 313 267 318 ÷ 2 = 711 332 156 633 659 + 0;
  • 711 332 156 633 659 ÷ 2 = 355 666 078 316 829 + 1;
  • 355 666 078 316 829 ÷ 2 = 177 833 039 158 414 + 1;
  • 177 833 039 158 414 ÷ 2 = 88 916 519 579 207 + 0;
  • 88 916 519 579 207 ÷ 2 = 44 458 259 789 603 + 1;
  • 44 458 259 789 603 ÷ 2 = 22 229 129 894 801 + 1;
  • 22 229 129 894 801 ÷ 2 = 11 114 564 947 400 + 1;
  • 11 114 564 947 400 ÷ 2 = 5 557 282 473 700 + 0;
  • 5 557 282 473 700 ÷ 2 = 2 778 641 236 850 + 0;
  • 2 778 641 236 850 ÷ 2 = 1 389 320 618 425 + 0;
  • 1 389 320 618 425 ÷ 2 = 694 660 309 212 + 1;
  • 694 660 309 212 ÷ 2 = 347 330 154 606 + 0;
  • 347 330 154 606 ÷ 2 = 173 665 077 303 + 0;
  • 173 665 077 303 ÷ 2 = 86 832 538 651 + 1;
  • 86 832 538 651 ÷ 2 = 43 416 269 325 + 1;
  • 43 416 269 325 ÷ 2 = 21 708 134 662 + 1;
  • 21 708 134 662 ÷ 2 = 10 854 067 331 + 0;
  • 10 854 067 331 ÷ 2 = 5 427 033 665 + 1;
  • 5 427 033 665 ÷ 2 = 2 713 516 832 + 1;
  • 2 713 516 832 ÷ 2 = 1 356 758 416 + 0;
  • 1 356 758 416 ÷ 2 = 678 379 208 + 0;
  • 678 379 208 ÷ 2 = 339 189 604 + 0;
  • 339 189 604 ÷ 2 = 169 594 802 + 0;
  • 169 594 802 ÷ 2 = 84 797 401 + 0;
  • 84 797 401 ÷ 2 = 42 398 700 + 1;
  • 42 398 700 ÷ 2 = 21 199 350 + 0;
  • 21 199 350 ÷ 2 = 10 599 675 + 0;
  • 10 599 675 ÷ 2 = 5 299 837 + 1;
  • 5 299 837 ÷ 2 = 2 649 918 + 1;
  • 2 649 918 ÷ 2 = 1 324 959 + 0;
  • 1 324 959 ÷ 2 = 662 479 + 1;
  • 662 479 ÷ 2 = 331 239 + 1;
  • 331 239 ÷ 2 = 165 619 + 1;
  • 165 619 ÷ 2 = 82 809 + 1;
  • 82 809 ÷ 2 = 41 404 + 1;
  • 41 404 ÷ 2 = 20 702 + 0;
  • 20 702 ÷ 2 = 10 351 + 0;
  • 10 351 ÷ 2 = 5 175 + 1;
  • 5 175 ÷ 2 = 2 587 + 1;
  • 2 587 ÷ 2 = 1 293 + 1;
  • 1 293 ÷ 2 = 646 + 1;
  • 646 ÷ 2 = 323 + 0;
  • 323 ÷ 2 = 161 + 1;
  • 161 ÷ 2 = 80 + 1;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


100 111 101 111 000 000 000 000 000 047(10) =


1 0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 96 positions to the left, so that only one non zero digit remains to the left of it:


100 111 101 111 000 000 000 000 000 047(10) =


1 0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111(2) =


1 0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111(2) × 20 =


1.0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111(2) × 296


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 96


Mantissa (not normalized):
1.0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


96 + 2(11-1) - 1 =


(96 + 1 023)(10) =


1 119(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 119 ÷ 2 = 559 + 1;
  • 559 ÷ 2 = 279 + 1;
  • 279 ÷ 2 = 139 + 1;
  • 139 ÷ 2 = 69 + 1;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1119(10) =


100 0101 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011 1001 1100 1001 1101 1000 0111 1100 0000 0000 0010 1111 =


0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0101 1111


Mantissa (52 bits) =
0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011


The base ten decimal number 100 111 101 111 000 000 000 000 000 047 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0101 1111 - 0100 0011 0111 1001 1111 0110 0100 0001 1011 1001 0001 1101 1011

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 3.143 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:43 UTC (GMT)
Number 2 796.12 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:43 UTC (GMT)
Number 40.156 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:43 UTC (GMT)
Number -45 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number 922 337 203 685 569 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number 67 876.2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number 1 111 100 110 111 100 001 100 111 100 000 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number -0.107 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number 356.74 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
Number 18 446 744 073 575 333 802 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 02 09:42 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100