64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.785 398 163 346 386 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.785 398 163 346 386(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.785 398 163 346 386.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.785 398 163 346 386 × 2 = 1 + 0.570 796 326 692 772;
  • 2) 0.570 796 326 692 772 × 2 = 1 + 0.141 592 653 385 544;
  • 3) 0.141 592 653 385 544 × 2 = 0 + 0.283 185 306 771 088;
  • 4) 0.283 185 306 771 088 × 2 = 0 + 0.566 370 613 542 176;
  • 5) 0.566 370 613 542 176 × 2 = 1 + 0.132 741 227 084 352;
  • 6) 0.132 741 227 084 352 × 2 = 0 + 0.265 482 454 168 704;
  • 7) 0.265 482 454 168 704 × 2 = 0 + 0.530 964 908 337 408;
  • 8) 0.530 964 908 337 408 × 2 = 1 + 0.061 929 816 674 816;
  • 9) 0.061 929 816 674 816 × 2 = 0 + 0.123 859 633 349 632;
  • 10) 0.123 859 633 349 632 × 2 = 0 + 0.247 719 266 699 264;
  • 11) 0.247 719 266 699 264 × 2 = 0 + 0.495 438 533 398 528;
  • 12) 0.495 438 533 398 528 × 2 = 0 + 0.990 877 066 797 056;
  • 13) 0.990 877 066 797 056 × 2 = 1 + 0.981 754 133 594 112;
  • 14) 0.981 754 133 594 112 × 2 = 1 + 0.963 508 267 188 224;
  • 15) 0.963 508 267 188 224 × 2 = 1 + 0.927 016 534 376 448;
  • 16) 0.927 016 534 376 448 × 2 = 1 + 0.854 033 068 752 896;
  • 17) 0.854 033 068 752 896 × 2 = 1 + 0.708 066 137 505 792;
  • 18) 0.708 066 137 505 792 × 2 = 1 + 0.416 132 275 011 584;
  • 19) 0.416 132 275 011 584 × 2 = 0 + 0.832 264 550 023 168;
  • 20) 0.832 264 550 023 168 × 2 = 1 + 0.664 529 100 046 336;
  • 21) 0.664 529 100 046 336 × 2 = 1 + 0.329 058 200 092 672;
  • 22) 0.329 058 200 092 672 × 2 = 0 + 0.658 116 400 185 344;
  • 23) 0.658 116 400 185 344 × 2 = 1 + 0.316 232 800 370 688;
  • 24) 0.316 232 800 370 688 × 2 = 0 + 0.632 465 600 741 376;
  • 25) 0.632 465 600 741 376 × 2 = 1 + 0.264 931 201 482 752;
  • 26) 0.264 931 201 482 752 × 2 = 0 + 0.529 862 402 965 504;
  • 27) 0.529 862 402 965 504 × 2 = 1 + 0.059 724 805 931 008;
  • 28) 0.059 724 805 931 008 × 2 = 0 + 0.119 449 611 862 016;
  • 29) 0.119 449 611 862 016 × 2 = 0 + 0.238 899 223 724 032;
  • 30) 0.238 899 223 724 032 × 2 = 0 + 0.477 798 447 448 064;
  • 31) 0.477 798 447 448 064 × 2 = 0 + 0.955 596 894 896 128;
  • 32) 0.955 596 894 896 128 × 2 = 1 + 0.911 193 789 792 256;
  • 33) 0.911 193 789 792 256 × 2 = 1 + 0.822 387 579 584 512;
  • 34) 0.822 387 579 584 512 × 2 = 1 + 0.644 775 159 169 024;
  • 35) 0.644 775 159 169 024 × 2 = 1 + 0.289 550 318 338 048;
  • 36) 0.289 550 318 338 048 × 2 = 0 + 0.579 100 636 676 096;
  • 37) 0.579 100 636 676 096 × 2 = 1 + 0.158 201 273 352 192;
  • 38) 0.158 201 273 352 192 × 2 = 0 + 0.316 402 546 704 384;
  • 39) 0.316 402 546 704 384 × 2 = 0 + 0.632 805 093 408 768;
  • 40) 0.632 805 093 408 768 × 2 = 1 + 0.265 610 186 817 536;
  • 41) 0.265 610 186 817 536 × 2 = 0 + 0.531 220 373 635 072;
  • 42) 0.531 220 373 635 072 × 2 = 1 + 0.062 440 747 270 144;
  • 43) 0.062 440 747 270 144 × 2 = 0 + 0.124 881 494 540 288;
  • 44) 0.124 881 494 540 288 × 2 = 0 + 0.249 762 989 080 576;
  • 45) 0.249 762 989 080 576 × 2 = 0 + 0.499 525 978 161 152;
  • 46) 0.499 525 978 161 152 × 2 = 0 + 0.999 051 956 322 304;
  • 47) 0.999 051 956 322 304 × 2 = 1 + 0.998 103 912 644 608;
  • 48) 0.998 103 912 644 608 × 2 = 1 + 0.996 207 825 289 216;
  • 49) 0.996 207 825 289 216 × 2 = 1 + 0.992 415 650 578 432;
  • 50) 0.992 415 650 578 432 × 2 = 1 + 0.984 831 301 156 864;
  • 51) 0.984 831 301 156 864 × 2 = 1 + 0.969 662 602 313 728;
  • 52) 0.969 662 602 313 728 × 2 = 1 + 0.939 325 204 627 456;
  • 53) 0.939 325 204 627 456 × 2 = 1 + 0.878 650 409 254 912;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.785 398 163 346 386(10) =


0.1100 1001 0000 1111 1101 1010 1010 0001 1110 1001 0100 0011 1111 1(2)


5. Positive number before normalization:

0.785 398 163 346 386(10) =


0.1100 1001 0000 1111 1101 1010 1010 0001 1110 1001 0100 0011 1111 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.785 398 163 346 386(10) =


0.1100 1001 0000 1111 1101 1010 1010 0001 1110 1001 0100 0011 1111 1(2) =


0.1100 1001 0000 1111 1101 1010 1010 0001 1110 1001 0100 0011 1111 1(2) × 20 =


1.1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111 =


1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111


The base ten decimal number 0.785 398 163 346 386 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1110 - 1001 0010 0001 1111 1011 0101 0100 0011 1101 0010 1000 0111 1111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1.618 033 988 749 894 848 204 586 834 365 638 117 720 309 179 805 762 862 131 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number -0.296 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number -16.737 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number -16 842 795 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number 41 263 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number 298 999 989 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number 0.785 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:38 UTC (GMT)
Number -21 091 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:37 UTC (GMT)
Number 11 311 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:37 UTC (GMT)
Number -85.5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 01 19:37 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100