64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.648 419 777 325 504 832 966 874 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.648 419 777 325 504 832 966 874(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.648 419 777 325 504 832 966 874.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.648 419 777 325 504 832 966 874 × 2 = 1 + 0.296 839 554 651 009 665 933 748;
  • 2) 0.296 839 554 651 009 665 933 748 × 2 = 0 + 0.593 679 109 302 019 331 867 496;
  • 3) 0.593 679 109 302 019 331 867 496 × 2 = 1 + 0.187 358 218 604 038 663 734 992;
  • 4) 0.187 358 218 604 038 663 734 992 × 2 = 0 + 0.374 716 437 208 077 327 469 984;
  • 5) 0.374 716 437 208 077 327 469 984 × 2 = 0 + 0.749 432 874 416 154 654 939 968;
  • 6) 0.749 432 874 416 154 654 939 968 × 2 = 1 + 0.498 865 748 832 309 309 879 936;
  • 7) 0.498 865 748 832 309 309 879 936 × 2 = 0 + 0.997 731 497 664 618 619 759 872;
  • 8) 0.997 731 497 664 618 619 759 872 × 2 = 1 + 0.995 462 995 329 237 239 519 744;
  • 9) 0.995 462 995 329 237 239 519 744 × 2 = 1 + 0.990 925 990 658 474 479 039 488;
  • 10) 0.990 925 990 658 474 479 039 488 × 2 = 1 + 0.981 851 981 316 948 958 078 976;
  • 11) 0.981 851 981 316 948 958 078 976 × 2 = 1 + 0.963 703 962 633 897 916 157 952;
  • 12) 0.963 703 962 633 897 916 157 952 × 2 = 1 + 0.927 407 925 267 795 832 315 904;
  • 13) 0.927 407 925 267 795 832 315 904 × 2 = 1 + 0.854 815 850 535 591 664 631 808;
  • 14) 0.854 815 850 535 591 664 631 808 × 2 = 1 + 0.709 631 701 071 183 329 263 616;
  • 15) 0.709 631 701 071 183 329 263 616 × 2 = 1 + 0.419 263 402 142 366 658 527 232;
  • 16) 0.419 263 402 142 366 658 527 232 × 2 = 0 + 0.838 526 804 284 733 317 054 464;
  • 17) 0.838 526 804 284 733 317 054 464 × 2 = 1 + 0.677 053 608 569 466 634 108 928;
  • 18) 0.677 053 608 569 466 634 108 928 × 2 = 1 + 0.354 107 217 138 933 268 217 856;
  • 19) 0.354 107 217 138 933 268 217 856 × 2 = 0 + 0.708 214 434 277 866 536 435 712;
  • 20) 0.708 214 434 277 866 536 435 712 × 2 = 1 + 0.416 428 868 555 733 072 871 424;
  • 21) 0.416 428 868 555 733 072 871 424 × 2 = 0 + 0.832 857 737 111 466 145 742 848;
  • 22) 0.832 857 737 111 466 145 742 848 × 2 = 1 + 0.665 715 474 222 932 291 485 696;
  • 23) 0.665 715 474 222 932 291 485 696 × 2 = 1 + 0.331 430 948 445 864 582 971 392;
  • 24) 0.331 430 948 445 864 582 971 392 × 2 = 0 + 0.662 861 896 891 729 165 942 784;
  • 25) 0.662 861 896 891 729 165 942 784 × 2 = 1 + 0.325 723 793 783 458 331 885 568;
  • 26) 0.325 723 793 783 458 331 885 568 × 2 = 0 + 0.651 447 587 566 916 663 771 136;
  • 27) 0.651 447 587 566 916 663 771 136 × 2 = 1 + 0.302 895 175 133 833 327 542 272;
  • 28) 0.302 895 175 133 833 327 542 272 × 2 = 0 + 0.605 790 350 267 666 655 084 544;
  • 29) 0.605 790 350 267 666 655 084 544 × 2 = 1 + 0.211 580 700 535 333 310 169 088;
  • 30) 0.211 580 700 535 333 310 169 088 × 2 = 0 + 0.423 161 401 070 666 620 338 176;
  • 31) 0.423 161 401 070 666 620 338 176 × 2 = 0 + 0.846 322 802 141 333 240 676 352;
  • 32) 0.846 322 802 141 333 240 676 352 × 2 = 1 + 0.692 645 604 282 666 481 352 704;
  • 33) 0.692 645 604 282 666 481 352 704 × 2 = 1 + 0.385 291 208 565 332 962 705 408;
  • 34) 0.385 291 208 565 332 962 705 408 × 2 = 0 + 0.770 582 417 130 665 925 410 816;
  • 35) 0.770 582 417 130 665 925 410 816 × 2 = 1 + 0.541 164 834 261 331 850 821 632;
  • 36) 0.541 164 834 261 331 850 821 632 × 2 = 1 + 0.082 329 668 522 663 701 643 264;
  • 37) 0.082 329 668 522 663 701 643 264 × 2 = 0 + 0.164 659 337 045 327 403 286 528;
  • 38) 0.164 659 337 045 327 403 286 528 × 2 = 0 + 0.329 318 674 090 654 806 573 056;
  • 39) 0.329 318 674 090 654 806 573 056 × 2 = 0 + 0.658 637 348 181 309 613 146 112;
  • 40) 0.658 637 348 181 309 613 146 112 × 2 = 1 + 0.317 274 696 362 619 226 292 224;
  • 41) 0.317 274 696 362 619 226 292 224 × 2 = 0 + 0.634 549 392 725 238 452 584 448;
  • 42) 0.634 549 392 725 238 452 584 448 × 2 = 1 + 0.269 098 785 450 476 905 168 896;
  • 43) 0.269 098 785 450 476 905 168 896 × 2 = 0 + 0.538 197 570 900 953 810 337 792;
  • 44) 0.538 197 570 900 953 810 337 792 × 2 = 1 + 0.076 395 141 801 907 620 675 584;
  • 45) 0.076 395 141 801 907 620 675 584 × 2 = 0 + 0.152 790 283 603 815 241 351 168;
  • 46) 0.152 790 283 603 815 241 351 168 × 2 = 0 + 0.305 580 567 207 630 482 702 336;
  • 47) 0.305 580 567 207 630 482 702 336 × 2 = 0 + 0.611 161 134 415 260 965 404 672;
  • 48) 0.611 161 134 415 260 965 404 672 × 2 = 1 + 0.222 322 268 830 521 930 809 344;
  • 49) 0.222 322 268 830 521 930 809 344 × 2 = 0 + 0.444 644 537 661 043 861 618 688;
  • 50) 0.444 644 537 661 043 861 618 688 × 2 = 0 + 0.889 289 075 322 087 723 237 376;
  • 51) 0.889 289 075 322 087 723 237 376 × 2 = 1 + 0.778 578 150 644 175 446 474 752;
  • 52) 0.778 578 150 644 175 446 474 752 × 2 = 1 + 0.557 156 301 288 350 892 949 504;
  • 53) 0.557 156 301 288 350 892 949 504 × 2 = 1 + 0.114 312 602 576 701 785 899 008;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.648 419 777 325 504 832 966 874(10) =


0.1010 0101 1111 1110 1101 0110 1010 1001 1011 0001 0101 0001 0011 1(2)


5. Positive number before normalization:

0.648 419 777 325 504 832 966 874(10) =


0.1010 0101 1111 1110 1101 0110 1010 1001 1011 0001 0101 0001 0011 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.648 419 777 325 504 832 966 874(10) =


0.1010 0101 1111 1110 1101 0110 1010 1001 1011 0001 0101 0001 0011 1(2) =


0.1010 0101 1111 1110 1101 0110 1010 1001 1011 0001 0101 0001 0011 1(2) × 20 =


1.0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111 =


0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111


The base ten decimal number 0.648 419 777 325 504 832 966 874 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1110 - 0100 1011 1111 1101 1010 1101 0101 0011 0110 0010 1010 0010 0111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.841 46 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number -1 209 845 399.715 454 101 562 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number -931 306 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number 0.000 000 476 837 158 203 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number 0.677 127 773 468 446 367 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number 2.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number -2.709 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:37 UTC (GMT)
Number 246.22 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:36 UTC (GMT)
Number 23 120 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:36 UTC (GMT)
Number -5 104.4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 22 01:36 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100