64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.190 381 954 206 6 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.190 381 954 206 6(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.190 381 954 206 6.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.190 381 954 206 6 × 2 = 0 + 0.380 763 908 413 2;
  • 2) 0.380 763 908 413 2 × 2 = 0 + 0.761 527 816 826 4;
  • 3) 0.761 527 816 826 4 × 2 = 1 + 0.523 055 633 652 8;
  • 4) 0.523 055 633 652 8 × 2 = 1 + 0.046 111 267 305 6;
  • 5) 0.046 111 267 305 6 × 2 = 0 + 0.092 222 534 611 2;
  • 6) 0.092 222 534 611 2 × 2 = 0 + 0.184 445 069 222 4;
  • 7) 0.184 445 069 222 4 × 2 = 0 + 0.368 890 138 444 8;
  • 8) 0.368 890 138 444 8 × 2 = 0 + 0.737 780 276 889 6;
  • 9) 0.737 780 276 889 6 × 2 = 1 + 0.475 560 553 779 2;
  • 10) 0.475 560 553 779 2 × 2 = 0 + 0.951 121 107 558 4;
  • 11) 0.951 121 107 558 4 × 2 = 1 + 0.902 242 215 116 8;
  • 12) 0.902 242 215 116 8 × 2 = 1 + 0.804 484 430 233 6;
  • 13) 0.804 484 430 233 6 × 2 = 1 + 0.608 968 860 467 2;
  • 14) 0.608 968 860 467 2 × 2 = 1 + 0.217 937 720 934 4;
  • 15) 0.217 937 720 934 4 × 2 = 0 + 0.435 875 441 868 8;
  • 16) 0.435 875 441 868 8 × 2 = 0 + 0.871 750 883 737 6;
  • 17) 0.871 750 883 737 6 × 2 = 1 + 0.743 501 767 475 2;
  • 18) 0.743 501 767 475 2 × 2 = 1 + 0.487 003 534 950 4;
  • 19) 0.487 003 534 950 4 × 2 = 0 + 0.974 007 069 900 8;
  • 20) 0.974 007 069 900 8 × 2 = 1 + 0.948 014 139 801 6;
  • 21) 0.948 014 139 801 6 × 2 = 1 + 0.896 028 279 603 2;
  • 22) 0.896 028 279 603 2 × 2 = 1 + 0.792 056 559 206 4;
  • 23) 0.792 056 559 206 4 × 2 = 1 + 0.584 113 118 412 8;
  • 24) 0.584 113 118 412 8 × 2 = 1 + 0.168 226 236 825 6;
  • 25) 0.168 226 236 825 6 × 2 = 0 + 0.336 452 473 651 2;
  • 26) 0.336 452 473 651 2 × 2 = 0 + 0.672 904 947 302 4;
  • 27) 0.672 904 947 302 4 × 2 = 1 + 0.345 809 894 604 8;
  • 28) 0.345 809 894 604 8 × 2 = 0 + 0.691 619 789 209 6;
  • 29) 0.691 619 789 209 6 × 2 = 1 + 0.383 239 578 419 2;
  • 30) 0.383 239 578 419 2 × 2 = 0 + 0.766 479 156 838 4;
  • 31) 0.766 479 156 838 4 × 2 = 1 + 0.532 958 313 676 8;
  • 32) 0.532 958 313 676 8 × 2 = 1 + 0.065 916 627 353 6;
  • 33) 0.065 916 627 353 6 × 2 = 0 + 0.131 833 254 707 2;
  • 34) 0.131 833 254 707 2 × 2 = 0 + 0.263 666 509 414 4;
  • 35) 0.263 666 509 414 4 × 2 = 0 + 0.527 333 018 828 8;
  • 36) 0.527 333 018 828 8 × 2 = 1 + 0.054 666 037 657 6;
  • 37) 0.054 666 037 657 6 × 2 = 0 + 0.109 332 075 315 2;
  • 38) 0.109 332 075 315 2 × 2 = 0 + 0.218 664 150 630 4;
  • 39) 0.218 664 150 630 4 × 2 = 0 + 0.437 328 301 260 8;
  • 40) 0.437 328 301 260 8 × 2 = 0 + 0.874 656 602 521 6;
  • 41) 0.874 656 602 521 6 × 2 = 1 + 0.749 313 205 043 2;
  • 42) 0.749 313 205 043 2 × 2 = 1 + 0.498 626 410 086 4;
  • 43) 0.498 626 410 086 4 × 2 = 0 + 0.997 252 820 172 8;
  • 44) 0.997 252 820 172 8 × 2 = 1 + 0.994 505 640 345 6;
  • 45) 0.994 505 640 345 6 × 2 = 1 + 0.989 011 280 691 2;
  • 46) 0.989 011 280 691 2 × 2 = 1 + 0.978 022 561 382 4;
  • 47) 0.978 022 561 382 4 × 2 = 1 + 0.956 045 122 764 8;
  • 48) 0.956 045 122 764 8 × 2 = 1 + 0.912 090 245 529 6;
  • 49) 0.912 090 245 529 6 × 2 = 1 + 0.824 180 491 059 2;
  • 50) 0.824 180 491 059 2 × 2 = 1 + 0.648 360 982 118 4;
  • 51) 0.648 360 982 118 4 × 2 = 1 + 0.296 721 964 236 8;
  • 52) 0.296 721 964 236 8 × 2 = 0 + 0.593 443 928 473 6;
  • 53) 0.593 443 928 473 6 × 2 = 1 + 0.186 887 856 947 2;
  • 54) 0.186 887 856 947 2 × 2 = 0 + 0.373 775 713 894 4;
  • 55) 0.373 775 713 894 4 × 2 = 0 + 0.747 551 427 788 8;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.190 381 954 206 6(10) =


0.0011 0000 1011 1100 1101 1111 0010 1011 0001 0000 1101 1111 1110 100(2)


5. Positive number before normalization:

0.190 381 954 206 6(10) =


0.0011 0000 1011 1100 1101 1111 0010 1011 0001 0000 1101 1111 1110 100(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the right, so that only one non zero digit remains to the left of it:


0.190 381 954 206 6(10) =


0.0011 0000 1011 1100 1101 1111 0010 1011 0001 0000 1101 1111 1110 100(2) =


0.0011 0000 1011 1100 1101 1111 0010 1011 0001 0000 1101 1111 1110 100(2) × 20 =


1.1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100(2) × 2-3


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -3


Mantissa (not normalized):
1.1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-3 + 2(11-1) - 1 =


(-3 + 1 023)(10) =


1 020(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 020 ÷ 2 = 510 + 0;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1020(10) =


011 1111 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100 =


1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1100


Mantissa (52 bits) =
1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100


The base ten decimal number 0.190 381 954 206 6 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1100 - 1000 0101 1110 0110 1111 1001 0101 1000 1000 0110 1111 1111 0100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 103.68 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 0.372 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 25 653 735 901 691 723 904 338 463 203 970 630 422 080 959 452 704 239 779 860 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 68 934 227 730 104 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 1 660 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 3 174.624 301 596 932 582 469 83 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 8.371 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 7 314 551 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 49.78 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
Number 87 552 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 18 11:54 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100