64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.133 807 264 268 398 284 915 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.133 807 264 268 398 284 915(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.133 807 264 268 398 284 915.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.133 807 264 268 398 284 915 × 2 = 0 + 0.267 614 528 536 796 569 83;
  • 2) 0.267 614 528 536 796 569 83 × 2 = 0 + 0.535 229 057 073 593 139 66;
  • 3) 0.535 229 057 073 593 139 66 × 2 = 1 + 0.070 458 114 147 186 279 32;
  • 4) 0.070 458 114 147 186 279 32 × 2 = 0 + 0.140 916 228 294 372 558 64;
  • 5) 0.140 916 228 294 372 558 64 × 2 = 0 + 0.281 832 456 588 745 117 28;
  • 6) 0.281 832 456 588 745 117 28 × 2 = 0 + 0.563 664 913 177 490 234 56;
  • 7) 0.563 664 913 177 490 234 56 × 2 = 1 + 0.127 329 826 354 980 469 12;
  • 8) 0.127 329 826 354 980 469 12 × 2 = 0 + 0.254 659 652 709 960 938 24;
  • 9) 0.254 659 652 709 960 938 24 × 2 = 0 + 0.509 319 305 419 921 876 48;
  • 10) 0.509 319 305 419 921 876 48 × 2 = 1 + 0.018 638 610 839 843 752 96;
  • 11) 0.018 638 610 839 843 752 96 × 2 = 0 + 0.037 277 221 679 687 505 92;
  • 12) 0.037 277 221 679 687 505 92 × 2 = 0 + 0.074 554 443 359 375 011 84;
  • 13) 0.074 554 443 359 375 011 84 × 2 = 0 + 0.149 108 886 718 750 023 68;
  • 14) 0.149 108 886 718 750 023 68 × 2 = 0 + 0.298 217 773 437 500 047 36;
  • 15) 0.298 217 773 437 500 047 36 × 2 = 0 + 0.596 435 546 875 000 094 72;
  • 16) 0.596 435 546 875 000 094 72 × 2 = 1 + 0.192 871 093 750 000 189 44;
  • 17) 0.192 871 093 750 000 189 44 × 2 = 0 + 0.385 742 187 500 000 378 88;
  • 18) 0.385 742 187 500 000 378 88 × 2 = 0 + 0.771 484 375 000 000 757 76;
  • 19) 0.771 484 375 000 000 757 76 × 2 = 1 + 0.542 968 750 000 001 515 52;
  • 20) 0.542 968 750 000 001 515 52 × 2 = 1 + 0.085 937 500 000 003 031 04;
  • 21) 0.085 937 500 000 003 031 04 × 2 = 0 + 0.171 875 000 000 006 062 08;
  • 22) 0.171 875 000 000 006 062 08 × 2 = 0 + 0.343 750 000 000 012 124 16;
  • 23) 0.343 750 000 000 012 124 16 × 2 = 0 + 0.687 500 000 000 024 248 32;
  • 24) 0.687 500 000 000 024 248 32 × 2 = 1 + 0.375 000 000 000 048 496 64;
  • 25) 0.375 000 000 000 048 496 64 × 2 = 0 + 0.750 000 000 000 096 993 28;
  • 26) 0.750 000 000 000 096 993 28 × 2 = 1 + 0.500 000 000 000 193 986 56;
  • 27) 0.500 000 000 000 193 986 56 × 2 = 1 + 0.000 000 000 000 387 973 12;
  • 28) 0.000 000 000 000 387 973 12 × 2 = 0 + 0.000 000 000 000 775 946 24;
  • 29) 0.000 000 000 000 775 946 24 × 2 = 0 + 0.000 000 000 001 551 892 48;
  • 30) 0.000 000 000 001 551 892 48 × 2 = 0 + 0.000 000 000 003 103 784 96;
  • 31) 0.000 000 000 003 103 784 96 × 2 = 0 + 0.000 000 000 006 207 569 92;
  • 32) 0.000 000 000 006 207 569 92 × 2 = 0 + 0.000 000 000 012 415 139 84;
  • 33) 0.000 000 000 012 415 139 84 × 2 = 0 + 0.000 000 000 024 830 279 68;
  • 34) 0.000 000 000 024 830 279 68 × 2 = 0 + 0.000 000 000 049 660 559 36;
  • 35) 0.000 000 000 049 660 559 36 × 2 = 0 + 0.000 000 000 099 321 118 72;
  • 36) 0.000 000 000 099 321 118 72 × 2 = 0 + 0.000 000 000 198 642 237 44;
  • 37) 0.000 000 000 198 642 237 44 × 2 = 0 + 0.000 000 000 397 284 474 88;
  • 38) 0.000 000 000 397 284 474 88 × 2 = 0 + 0.000 000 000 794 568 949 76;
  • 39) 0.000 000 000 794 568 949 76 × 2 = 0 + 0.000 000 001 589 137 899 52;
  • 40) 0.000 000 001 589 137 899 52 × 2 = 0 + 0.000 000 003 178 275 799 04;
  • 41) 0.000 000 003 178 275 799 04 × 2 = 0 + 0.000 000 006 356 551 598 08;
  • 42) 0.000 000 006 356 551 598 08 × 2 = 0 + 0.000 000 012 713 103 196 16;
  • 43) 0.000 000 012 713 103 196 16 × 2 = 0 + 0.000 000 025 426 206 392 32;
  • 44) 0.000 000 025 426 206 392 32 × 2 = 0 + 0.000 000 050 852 412 784 64;
  • 45) 0.000 000 050 852 412 784 64 × 2 = 0 + 0.000 000 101 704 825 569 28;
  • 46) 0.000 000 101 704 825 569 28 × 2 = 0 + 0.000 000 203 409 651 138 56;
  • 47) 0.000 000 203 409 651 138 56 × 2 = 0 + 0.000 000 406 819 302 277 12;
  • 48) 0.000 000 406 819 302 277 12 × 2 = 0 + 0.000 000 813 638 604 554 24;
  • 49) 0.000 000 813 638 604 554 24 × 2 = 0 + 0.000 001 627 277 209 108 48;
  • 50) 0.000 001 627 277 209 108 48 × 2 = 0 + 0.000 003 254 554 418 216 96;
  • 51) 0.000 003 254 554 418 216 96 × 2 = 0 + 0.000 006 509 108 836 433 92;
  • 52) 0.000 006 509 108 836 433 92 × 2 = 0 + 0.000 013 018 217 672 867 84;
  • 53) 0.000 013 018 217 672 867 84 × 2 = 0 + 0.000 026 036 435 345 735 68;
  • 54) 0.000 026 036 435 345 735 68 × 2 = 0 + 0.000 052 072 870 691 471 36;
  • 55) 0.000 052 072 870 691 471 36 × 2 = 0 + 0.000 104 145 741 382 942 72;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.133 807 264 268 398 284 915(10) =


0.0010 0010 0100 0001 0011 0001 0110 0000 0000 0000 0000 0000 0000 000(2)


5. Positive number before normalization:

0.133 807 264 268 398 284 915(10) =


0.0010 0010 0100 0001 0011 0001 0110 0000 0000 0000 0000 0000 0000 000(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the right, so that only one non zero digit remains to the left of it:


0.133 807 264 268 398 284 915(10) =


0.0010 0010 0100 0001 0011 0001 0110 0000 0000 0000 0000 0000 0000 000(2) =


0.0010 0010 0100 0001 0011 0001 0110 0000 0000 0000 0000 0000 0000 000(2) × 20 =


1.0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000(2) × 2-3


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -3


Mantissa (not normalized):
1.0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-3 + 2(11-1) - 1 =


(-3 + 1 023)(10) =


1 020(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 020 ÷ 2 = 510 + 0;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1020(10) =


011 1111 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000 =


0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1100


Mantissa (52 bits) =
0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 0.133 807 264 268 398 284 915 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1100 - 0001 0010 0000 1001 1000 1011 0000 0000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 4 720 032 196 352 540 700 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:09 UTC (GMT)
Number 2.251 29 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:09 UTC (GMT)
Number 3 949 040.725 641 96 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 3 061 964 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 0.101 010 102 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -1 059 916 523 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 625 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -0.134 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -0.544 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 92.299 999 999 999 997 157 829 056 959 599 259 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100