64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.123 457 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.123 457(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.123 457.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.123 457 × 2 = 0 + 0.246 914;
  • 2) 0.246 914 × 2 = 0 + 0.493 828;
  • 3) 0.493 828 × 2 = 0 + 0.987 656;
  • 4) 0.987 656 × 2 = 1 + 0.975 312;
  • 5) 0.975 312 × 2 = 1 + 0.950 624;
  • 6) 0.950 624 × 2 = 1 + 0.901 248;
  • 7) 0.901 248 × 2 = 1 + 0.802 496;
  • 8) 0.802 496 × 2 = 1 + 0.604 992;
  • 9) 0.604 992 × 2 = 1 + 0.209 984;
  • 10) 0.209 984 × 2 = 0 + 0.419 968;
  • 11) 0.419 968 × 2 = 0 + 0.839 936;
  • 12) 0.839 936 × 2 = 1 + 0.679 872;
  • 13) 0.679 872 × 2 = 1 + 0.359 744;
  • 14) 0.359 744 × 2 = 0 + 0.719 488;
  • 15) 0.719 488 × 2 = 1 + 0.438 976;
  • 16) 0.438 976 × 2 = 0 + 0.877 952;
  • 17) 0.877 952 × 2 = 1 + 0.755 904;
  • 18) 0.755 904 × 2 = 1 + 0.511 808;
  • 19) 0.511 808 × 2 = 1 + 0.023 616;
  • 20) 0.023 616 × 2 = 0 + 0.047 232;
  • 21) 0.047 232 × 2 = 0 + 0.094 464;
  • 22) 0.094 464 × 2 = 0 + 0.188 928;
  • 23) 0.188 928 × 2 = 0 + 0.377 856;
  • 24) 0.377 856 × 2 = 0 + 0.755 712;
  • 25) 0.755 712 × 2 = 1 + 0.511 424;
  • 26) 0.511 424 × 2 = 1 + 0.022 848;
  • 27) 0.022 848 × 2 = 0 + 0.045 696;
  • 28) 0.045 696 × 2 = 0 + 0.091 392;
  • 29) 0.091 392 × 2 = 0 + 0.182 784;
  • 30) 0.182 784 × 2 = 0 + 0.365 568;
  • 31) 0.365 568 × 2 = 0 + 0.731 136;
  • 32) 0.731 136 × 2 = 1 + 0.462 272;
  • 33) 0.462 272 × 2 = 0 + 0.924 544;
  • 34) 0.924 544 × 2 = 1 + 0.849 088;
  • 35) 0.849 088 × 2 = 1 + 0.698 176;
  • 36) 0.698 176 × 2 = 1 + 0.396 352;
  • 37) 0.396 352 × 2 = 0 + 0.792 704;
  • 38) 0.792 704 × 2 = 1 + 0.585 408;
  • 39) 0.585 408 × 2 = 1 + 0.170 816;
  • 40) 0.170 816 × 2 = 0 + 0.341 632;
  • 41) 0.341 632 × 2 = 0 + 0.683 264;
  • 42) 0.683 264 × 2 = 1 + 0.366 528;
  • 43) 0.366 528 × 2 = 0 + 0.733 056;
  • 44) 0.733 056 × 2 = 1 + 0.466 112;
  • 45) 0.466 112 × 2 = 0 + 0.932 224;
  • 46) 0.932 224 × 2 = 1 + 0.864 448;
  • 47) 0.864 448 × 2 = 1 + 0.728 896;
  • 48) 0.728 896 × 2 = 1 + 0.457 792;
  • 49) 0.457 792 × 2 = 0 + 0.915 584;
  • 50) 0.915 584 × 2 = 1 + 0.831 168;
  • 51) 0.831 168 × 2 = 1 + 0.662 336;
  • 52) 0.662 336 × 2 = 1 + 0.324 672;
  • 53) 0.324 672 × 2 = 0 + 0.649 344;
  • 54) 0.649 344 × 2 = 1 + 0.298 688;
  • 55) 0.298 688 × 2 = 0 + 0.597 376;
  • 56) 0.597 376 × 2 = 1 + 0.194 752;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.123 457(10) =


0.0001 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101(2)


5. Positive number before normalization:

0.123 457(10) =


0.0001 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 4 positions to the right, so that only one non zero digit remains to the left of it:


0.123 457(10) =


0.0001 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101(2) =


0.0001 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101(2) × 20 =


1.1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101(2) × 2-4


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -4


Mantissa (not normalized):
1.1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-4 + 2(11-1) - 1 =


(-4 + 1 023)(10) =


1 019(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 019 ÷ 2 = 509 + 1;
  • 509 ÷ 2 = 254 + 1;
  • 254 ÷ 2 = 127 + 0;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1019(10) =


011 1111 1011(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101 =


1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1011


Mantissa (52 bits) =
1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101


The base ten decimal number 0.123 457 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1011 - 1111 1001 1010 1110 0000 1100 0001 0111 0110 0101 0111 0111 0101

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 220 975 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:14 UTC (GMT)
Number -340.812 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:14 UTC (GMT)
Number 77 777 754 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:14 UTC (GMT)
Number 9 007 199 282 528 351 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:14 UTC (GMT)
Number -10 161 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
Number 18 446 462 598 732 839 984 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
Number 1 100 000 000 010 099 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
Number 141 250 898 929 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
Number 45 715 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
Number 10 000 000 111 111 010 111 068 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 18:13 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100