Decimal to 64 Bit IEEE 754 Binary: Convert Number 0.026 916 503 895 5 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 0.026 916 503 895 5(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.026 916 503 895 5.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.026 916 503 895 5 × 2 = 0 + 0.053 833 007 791;
  • 2) 0.053 833 007 791 × 2 = 0 + 0.107 666 015 582;
  • 3) 0.107 666 015 582 × 2 = 0 + 0.215 332 031 164;
  • 4) 0.215 332 031 164 × 2 = 0 + 0.430 664 062 328;
  • 5) 0.430 664 062 328 × 2 = 0 + 0.861 328 124 656;
  • 6) 0.861 328 124 656 × 2 = 1 + 0.722 656 249 312;
  • 7) 0.722 656 249 312 × 2 = 1 + 0.445 312 498 624;
  • 8) 0.445 312 498 624 × 2 = 0 + 0.890 624 997 248;
  • 9) 0.890 624 997 248 × 2 = 1 + 0.781 249 994 496;
  • 10) 0.781 249 994 496 × 2 = 1 + 0.562 499 988 992;
  • 11) 0.562 499 988 992 × 2 = 1 + 0.124 999 977 984;
  • 12) 0.124 999 977 984 × 2 = 0 + 0.249 999 955 968;
  • 13) 0.249 999 955 968 × 2 = 0 + 0.499 999 911 936;
  • 14) 0.499 999 911 936 × 2 = 0 + 0.999 999 823 872;
  • 15) 0.999 999 823 872 × 2 = 1 + 0.999 999 647 744;
  • 16) 0.999 999 647 744 × 2 = 1 + 0.999 999 295 488;
  • 17) 0.999 999 295 488 × 2 = 1 + 0.999 998 590 976;
  • 18) 0.999 998 590 976 × 2 = 1 + 0.999 997 181 952;
  • 19) 0.999 997 181 952 × 2 = 1 + 0.999 994 363 904;
  • 20) 0.999 994 363 904 × 2 = 1 + 0.999 988 727 808;
  • 21) 0.999 988 727 808 × 2 = 1 + 0.999 977 455 616;
  • 22) 0.999 977 455 616 × 2 = 1 + 0.999 954 911 232;
  • 23) 0.999 954 911 232 × 2 = 1 + 0.999 909 822 464;
  • 24) 0.999 909 822 464 × 2 = 1 + 0.999 819 644 928;
  • 25) 0.999 819 644 928 × 2 = 1 + 0.999 639 289 856;
  • 26) 0.999 639 289 856 × 2 = 1 + 0.999 278 579 712;
  • 27) 0.999 278 579 712 × 2 = 1 + 0.998 557 159 424;
  • 28) 0.998 557 159 424 × 2 = 1 + 0.997 114 318 848;
  • 29) 0.997 114 318 848 × 2 = 1 + 0.994 228 637 696;
  • 30) 0.994 228 637 696 × 2 = 1 + 0.988 457 275 392;
  • 31) 0.988 457 275 392 × 2 = 1 + 0.976 914 550 784;
  • 32) 0.976 914 550 784 × 2 = 1 + 0.953 829 101 568;
  • 33) 0.953 829 101 568 × 2 = 1 + 0.907 658 203 136;
  • 34) 0.907 658 203 136 × 2 = 1 + 0.815 316 406 272;
  • 35) 0.815 316 406 272 × 2 = 1 + 0.630 632 812 544;
  • 36) 0.630 632 812 544 × 2 = 1 + 0.261 265 625 088;
  • 37) 0.261 265 625 088 × 2 = 0 + 0.522 531 250 176;
  • 38) 0.522 531 250 176 × 2 = 1 + 0.045 062 500 352;
  • 39) 0.045 062 500 352 × 2 = 0 + 0.090 125 000 704;
  • 40) 0.090 125 000 704 × 2 = 0 + 0.180 250 001 408;
  • 41) 0.180 250 001 408 × 2 = 0 + 0.360 500 002 816;
  • 42) 0.360 500 002 816 × 2 = 0 + 0.721 000 005 632;
  • 43) 0.721 000 005 632 × 2 = 1 + 0.442 000 011 264;
  • 44) 0.442 000 011 264 × 2 = 0 + 0.884 000 022 528;
  • 45) 0.884 000 022 528 × 2 = 1 + 0.768 000 045 056;
  • 46) 0.768 000 045 056 × 2 = 1 + 0.536 000 090 112;
  • 47) 0.536 000 090 112 × 2 = 1 + 0.072 000 180 224;
  • 48) 0.072 000 180 224 × 2 = 0 + 0.144 000 360 448;
  • 49) 0.144 000 360 448 × 2 = 0 + 0.288 000 720 896;
  • 50) 0.288 000 720 896 × 2 = 0 + 0.576 001 441 792;
  • 51) 0.576 001 441 792 × 2 = 1 + 0.152 002 883 584;
  • 52) 0.152 002 883 584 × 2 = 0 + 0.304 005 767 168;
  • 53) 0.304 005 767 168 × 2 = 0 + 0.608 011 534 336;
  • 54) 0.608 011 534 336 × 2 = 1 + 0.216 023 068 672;
  • 55) 0.216 023 068 672 × 2 = 0 + 0.432 046 137 344;
  • 56) 0.432 046 137 344 × 2 = 0 + 0.864 092 274 688;
  • 57) 0.864 092 274 688 × 2 = 1 + 0.728 184 549 376;
  • 58) 0.728 184 549 376 × 2 = 1 + 0.456 369 098 752;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.026 916 503 895 5(10) =


0.0000 0110 1110 0011 1111 1111 1111 1111 1111 0100 0010 1110 0010 0100 11(2)

5. Positive number before normalization:

0.026 916 503 895 5(10) =


0.0000 0110 1110 0011 1111 1111 1111 1111 1111 0100 0010 1110 0010 0100 11(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the right, so that only one non zero digit remains to the left of it:


0.026 916 503 895 5(10) =


0.0000 0110 1110 0011 1111 1111 1111 1111 1111 0100 0010 1110 0010 0100 11(2) =


0.0000 0110 1110 0011 1111 1111 1111 1111 1111 0100 0010 1110 0010 0100 11(2) × 20 =


1.1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011(2) × 2-6


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -6


Mantissa (not normalized):
1.1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-6 + 2(11-1) - 1 =


(-6 + 1 023)(10) =


1 017(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 017 ÷ 2 = 508 + 1;
  • 508 ÷ 2 = 254 + 0;
  • 254 ÷ 2 = 127 + 0;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1017(10) =


011 1111 1001(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011 =


1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1001


Mantissa (52 bits) =
1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011


The base ten decimal number 0.026 916 503 895 5 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 011 1111 1001 - 1011 1000 1111 1111 1111 1111 1111 1101 0000 1011 1000 1001 0011

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100