64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.000 003 669 410 94 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.000 003 669 410 94(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 003 669 410 94.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 003 669 410 94 × 2 = 0 + 0.000 007 338 821 88;
  • 2) 0.000 007 338 821 88 × 2 = 0 + 0.000 014 677 643 76;
  • 3) 0.000 014 677 643 76 × 2 = 0 + 0.000 029 355 287 52;
  • 4) 0.000 029 355 287 52 × 2 = 0 + 0.000 058 710 575 04;
  • 5) 0.000 058 710 575 04 × 2 = 0 + 0.000 117 421 150 08;
  • 6) 0.000 117 421 150 08 × 2 = 0 + 0.000 234 842 300 16;
  • 7) 0.000 234 842 300 16 × 2 = 0 + 0.000 469 684 600 32;
  • 8) 0.000 469 684 600 32 × 2 = 0 + 0.000 939 369 200 64;
  • 9) 0.000 939 369 200 64 × 2 = 0 + 0.001 878 738 401 28;
  • 10) 0.001 878 738 401 28 × 2 = 0 + 0.003 757 476 802 56;
  • 11) 0.003 757 476 802 56 × 2 = 0 + 0.007 514 953 605 12;
  • 12) 0.007 514 953 605 12 × 2 = 0 + 0.015 029 907 210 24;
  • 13) 0.015 029 907 210 24 × 2 = 0 + 0.030 059 814 420 48;
  • 14) 0.030 059 814 420 48 × 2 = 0 + 0.060 119 628 840 96;
  • 15) 0.060 119 628 840 96 × 2 = 0 + 0.120 239 257 681 92;
  • 16) 0.120 239 257 681 92 × 2 = 0 + 0.240 478 515 363 84;
  • 17) 0.240 478 515 363 84 × 2 = 0 + 0.480 957 030 727 68;
  • 18) 0.480 957 030 727 68 × 2 = 0 + 0.961 914 061 455 36;
  • 19) 0.961 914 061 455 36 × 2 = 1 + 0.923 828 122 910 72;
  • 20) 0.923 828 122 910 72 × 2 = 1 + 0.847 656 245 821 44;
  • 21) 0.847 656 245 821 44 × 2 = 1 + 0.695 312 491 642 88;
  • 22) 0.695 312 491 642 88 × 2 = 1 + 0.390 624 983 285 76;
  • 23) 0.390 624 983 285 76 × 2 = 0 + 0.781 249 966 571 52;
  • 24) 0.781 249 966 571 52 × 2 = 1 + 0.562 499 933 143 04;
  • 25) 0.562 499 933 143 04 × 2 = 1 + 0.124 999 866 286 08;
  • 26) 0.124 999 866 286 08 × 2 = 0 + 0.249 999 732 572 16;
  • 27) 0.249 999 732 572 16 × 2 = 0 + 0.499 999 465 144 32;
  • 28) 0.499 999 465 144 32 × 2 = 0 + 0.999 998 930 288 64;
  • 29) 0.999 998 930 288 64 × 2 = 1 + 0.999 997 860 577 28;
  • 30) 0.999 997 860 577 28 × 2 = 1 + 0.999 995 721 154 56;
  • 31) 0.999 995 721 154 56 × 2 = 1 + 0.999 991 442 309 12;
  • 32) 0.999 991 442 309 12 × 2 = 1 + 0.999 982 884 618 24;
  • 33) 0.999 982 884 618 24 × 2 = 1 + 0.999 965 769 236 48;
  • 34) 0.999 965 769 236 48 × 2 = 1 + 0.999 931 538 472 96;
  • 35) 0.999 931 538 472 96 × 2 = 1 + 0.999 863 076 945 92;
  • 36) 0.999 863 076 945 92 × 2 = 1 + 0.999 726 153 891 84;
  • 37) 0.999 726 153 891 84 × 2 = 1 + 0.999 452 307 783 68;
  • 38) 0.999 452 307 783 68 × 2 = 1 + 0.998 904 615 567 36;
  • 39) 0.998 904 615 567 36 × 2 = 1 + 0.997 809 231 134 72;
  • 40) 0.997 809 231 134 72 × 2 = 1 + 0.995 618 462 269 44;
  • 41) 0.995 618 462 269 44 × 2 = 1 + 0.991 236 924 538 88;
  • 42) 0.991 236 924 538 88 × 2 = 1 + 0.982 473 849 077 76;
  • 43) 0.982 473 849 077 76 × 2 = 1 + 0.964 947 698 155 52;
  • 44) 0.964 947 698 155 52 × 2 = 1 + 0.929 895 396 311 04;
  • 45) 0.929 895 396 311 04 × 2 = 1 + 0.859 790 792 622 08;
  • 46) 0.859 790 792 622 08 × 2 = 1 + 0.719 581 585 244 16;
  • 47) 0.719 581 585 244 16 × 2 = 1 + 0.439 163 170 488 32;
  • 48) 0.439 163 170 488 32 × 2 = 0 + 0.878 326 340 976 64;
  • 49) 0.878 326 340 976 64 × 2 = 1 + 0.756 652 681 953 28;
  • 50) 0.756 652 681 953 28 × 2 = 1 + 0.513 305 363 906 56;
  • 51) 0.513 305 363 906 56 × 2 = 1 + 0.026 610 727 813 12;
  • 52) 0.026 610 727 813 12 × 2 = 0 + 0.053 221 455 626 24;
  • 53) 0.053 221 455 626 24 × 2 = 0 + 0.106 442 911 252 48;
  • 54) 0.106 442 911 252 48 × 2 = 0 + 0.212 885 822 504 96;
  • 55) 0.212 885 822 504 96 × 2 = 0 + 0.425 771 645 009 92;
  • 56) 0.425 771 645 009 92 × 2 = 0 + 0.851 543 290 019 84;
  • 57) 0.851 543 290 019 84 × 2 = 1 + 0.703 086 580 039 68;
  • 58) 0.703 086 580 039 68 × 2 = 1 + 0.406 173 160 079 36;
  • 59) 0.406 173 160 079 36 × 2 = 0 + 0.812 346 320 158 72;
  • 60) 0.812 346 320 158 72 × 2 = 1 + 0.624 692 640 317 44;
  • 61) 0.624 692 640 317 44 × 2 = 1 + 0.249 385 280 634 88;
  • 62) 0.249 385 280 634 88 × 2 = 0 + 0.498 770 561 269 76;
  • 63) 0.498 770 561 269 76 × 2 = 0 + 0.997 541 122 539 52;
  • 64) 0.997 541 122 539 52 × 2 = 1 + 0.995 082 245 079 04;
  • 65) 0.995 082 245 079 04 × 2 = 1 + 0.990 164 490 158 08;
  • 66) 0.990 164 490 158 08 × 2 = 1 + 0.980 328 980 316 16;
  • 67) 0.980 328 980 316 16 × 2 = 1 + 0.960 657 960 632 32;
  • 68) 0.960 657 960 632 32 × 2 = 1 + 0.921 315 921 264 64;
  • 69) 0.921 315 921 264 64 × 2 = 1 + 0.842 631 842 529 28;
  • 70) 0.842 631 842 529 28 × 2 = 1 + 0.685 263 685 058 56;
  • 71) 0.685 263 685 058 56 × 2 = 1 + 0.370 527 370 117 12;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 003 669 410 94(10) =


0.0000 0000 0000 0000 0011 1101 1000 1111 1111 1111 1111 1110 1110 0000 1101 1001 1111 111(2)


5. Positive number before normalization:

0.000 003 669 410 94(10) =


0.0000 0000 0000 0000 0011 1101 1000 1111 1111 1111 1111 1110 1110 0000 1101 1001 1111 111(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 19 positions to the right, so that only one non zero digit remains to the left of it:


0.000 003 669 410 94(10) =


0.0000 0000 0000 0000 0011 1101 1000 1111 1111 1111 1111 1110 1110 0000 1101 1001 1111 111(2) =


0.0000 0000 0000 0000 0011 1101 1000 1111 1111 1111 1111 1110 1110 0000 1101 1001 1111 111(2) × 20 =


1.1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111(2) × 2-19


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -19


Mantissa (not normalized):
1.1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-19 + 2(11-1) - 1 =


(-19 + 1 023)(10) =


1 004(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 004 ÷ 2 = 502 + 0;
  • 502 ÷ 2 = 251 + 0;
  • 251 ÷ 2 = 125 + 1;
  • 125 ÷ 2 = 62 + 1;
  • 62 ÷ 2 = 31 + 0;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1004(10) =


011 1110 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111 =


1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1110 1100


Mantissa (52 bits) =
1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111


The base ten decimal number 0.000 003 669 410 94 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1110 1100 - 1110 1100 0111 1111 1111 1111 1111 0111 0000 0110 1100 1111 1111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 9.003 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:18 UTC (GMT)
Number -34.16 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:18 UTC (GMT)
Number 337.875 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:18 UTC (GMT)
Number -11 600 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:18 UTC (GMT)
Number 9 914 773.4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:18 UTC (GMT)
Number 34 563 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:17 UTC (GMT)
Number 20 277 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:17 UTC (GMT)
Number 18.313 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:17 UTC (GMT)
Number 18 266 226 734 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:17 UTC (GMT)
Number 5 767 131 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 19:17 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100