64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.000 000 13 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.000 000 13(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 13.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 13 × 2 = 0 + 0.000 000 26;
  • 2) 0.000 000 26 × 2 = 0 + 0.000 000 52;
  • 3) 0.000 000 52 × 2 = 0 + 0.000 001 04;
  • 4) 0.000 001 04 × 2 = 0 + 0.000 002 08;
  • 5) 0.000 002 08 × 2 = 0 + 0.000 004 16;
  • 6) 0.000 004 16 × 2 = 0 + 0.000 008 32;
  • 7) 0.000 008 32 × 2 = 0 + 0.000 016 64;
  • 8) 0.000 016 64 × 2 = 0 + 0.000 033 28;
  • 9) 0.000 033 28 × 2 = 0 + 0.000 066 56;
  • 10) 0.000 066 56 × 2 = 0 + 0.000 133 12;
  • 11) 0.000 133 12 × 2 = 0 + 0.000 266 24;
  • 12) 0.000 266 24 × 2 = 0 + 0.000 532 48;
  • 13) 0.000 532 48 × 2 = 0 + 0.001 064 96;
  • 14) 0.001 064 96 × 2 = 0 + 0.002 129 92;
  • 15) 0.002 129 92 × 2 = 0 + 0.004 259 84;
  • 16) 0.004 259 84 × 2 = 0 + 0.008 519 68;
  • 17) 0.008 519 68 × 2 = 0 + 0.017 039 36;
  • 18) 0.017 039 36 × 2 = 0 + 0.034 078 72;
  • 19) 0.034 078 72 × 2 = 0 + 0.068 157 44;
  • 20) 0.068 157 44 × 2 = 0 + 0.136 314 88;
  • 21) 0.136 314 88 × 2 = 0 + 0.272 629 76;
  • 22) 0.272 629 76 × 2 = 0 + 0.545 259 52;
  • 23) 0.545 259 52 × 2 = 1 + 0.090 519 04;
  • 24) 0.090 519 04 × 2 = 0 + 0.181 038 08;
  • 25) 0.181 038 08 × 2 = 0 + 0.362 076 16;
  • 26) 0.362 076 16 × 2 = 0 + 0.724 152 32;
  • 27) 0.724 152 32 × 2 = 1 + 0.448 304 64;
  • 28) 0.448 304 64 × 2 = 0 + 0.896 609 28;
  • 29) 0.896 609 28 × 2 = 1 + 0.793 218 56;
  • 30) 0.793 218 56 × 2 = 1 + 0.586 437 12;
  • 31) 0.586 437 12 × 2 = 1 + 0.172 874 24;
  • 32) 0.172 874 24 × 2 = 0 + 0.345 748 48;
  • 33) 0.345 748 48 × 2 = 0 + 0.691 496 96;
  • 34) 0.691 496 96 × 2 = 1 + 0.382 993 92;
  • 35) 0.382 993 92 × 2 = 0 + 0.765 987 84;
  • 36) 0.765 987 84 × 2 = 1 + 0.531 975 68;
  • 37) 0.531 975 68 × 2 = 1 + 0.063 951 36;
  • 38) 0.063 951 36 × 2 = 0 + 0.127 902 72;
  • 39) 0.127 902 72 × 2 = 0 + 0.255 805 44;
  • 40) 0.255 805 44 × 2 = 0 + 0.511 610 88;
  • 41) 0.511 610 88 × 2 = 1 + 0.023 221 76;
  • 42) 0.023 221 76 × 2 = 0 + 0.046 443 52;
  • 43) 0.046 443 52 × 2 = 0 + 0.092 887 04;
  • 44) 0.092 887 04 × 2 = 0 + 0.185 774 08;
  • 45) 0.185 774 08 × 2 = 0 + 0.371 548 16;
  • 46) 0.371 548 16 × 2 = 0 + 0.743 096 32;
  • 47) 0.743 096 32 × 2 = 1 + 0.486 192 64;
  • 48) 0.486 192 64 × 2 = 0 + 0.972 385 28;
  • 49) 0.972 385 28 × 2 = 1 + 0.944 770 56;
  • 50) 0.944 770 56 × 2 = 1 + 0.889 541 12;
  • 51) 0.889 541 12 × 2 = 1 + 0.779 082 24;
  • 52) 0.779 082 24 × 2 = 1 + 0.558 164 48;
  • 53) 0.558 164 48 × 2 = 1 + 0.116 328 96;
  • 54) 0.116 328 96 × 2 = 0 + 0.232 657 92;
  • 55) 0.232 657 92 × 2 = 0 + 0.465 315 84;
  • 56) 0.465 315 84 × 2 = 0 + 0.930 631 68;
  • 57) 0.930 631 68 × 2 = 1 + 0.861 263 36;
  • 58) 0.861 263 36 × 2 = 1 + 0.722 526 72;
  • 59) 0.722 526 72 × 2 = 1 + 0.445 053 44;
  • 60) 0.445 053 44 × 2 = 0 + 0.890 106 88;
  • 61) 0.890 106 88 × 2 = 1 + 0.780 213 76;
  • 62) 0.780 213 76 × 2 = 1 + 0.560 427 52;
  • 63) 0.560 427 52 × 2 = 1 + 0.120 855 04;
  • 64) 0.120 855 04 × 2 = 0 + 0.241 710 08;
  • 65) 0.241 710 08 × 2 = 0 + 0.483 420 16;
  • 66) 0.483 420 16 × 2 = 0 + 0.966 840 32;
  • 67) 0.966 840 32 × 2 = 1 + 0.933 680 64;
  • 68) 0.933 680 64 × 2 = 1 + 0.867 361 28;
  • 69) 0.867 361 28 × 2 = 1 + 0.734 722 56;
  • 70) 0.734 722 56 × 2 = 1 + 0.469 445 12;
  • 71) 0.469 445 12 × 2 = 0 + 0.938 890 24;
  • 72) 0.938 890 24 × 2 = 1 + 0.877 780 48;
  • 73) 0.877 780 48 × 2 = 1 + 0.755 560 96;
  • 74) 0.755 560 96 × 2 = 1 + 0.511 121 92;
  • 75) 0.511 121 92 × 2 = 1 + 0.022 243 84;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 13(10) =


0.0000 0000 0000 0000 0000 0010 0010 1110 0101 1000 1000 0010 1111 1000 1110 1110 0011 1101 111(2)


5. Positive number before normalization:

0.000 000 13(10) =


0.0000 0000 0000 0000 0000 0010 0010 1110 0101 1000 1000 0010 1111 1000 1110 1110 0011 1101 111(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 23 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 13(10) =


0.0000 0000 0000 0000 0000 0010 0010 1110 0101 1000 1000 0010 1111 1000 1110 1110 0011 1101 111(2) =


0.0000 0000 0000 0000 0000 0010 0010 1110 0101 1000 1000 0010 1111 1000 1110 1110 0011 1101 111(2) × 20 =


1.0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111(2) × 2-23


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -23


Mantissa (not normalized):
1.0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-23 + 2(11-1) - 1 =


(-23 + 1 023)(10) =


1 000(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 000 ÷ 2 = 500 + 0;
  • 500 ÷ 2 = 250 + 0;
  • 250 ÷ 2 = 125 + 0;
  • 125 ÷ 2 = 62 + 1;
  • 62 ÷ 2 = 31 + 0;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1000(10) =


011 1110 1000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111 =


0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1110 1000


Mantissa (52 bits) =
0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111


The base ten decimal number 0.000 000 13 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1110 1000 - 0001 0111 0010 1100 0100 0001 0111 1100 0111 0111 0001 1110 1111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -83.14 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 89.01 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 737 869 762.948 39 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 89.01 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 256 970 250 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number -32 835 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 916 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 4.325 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 20.23 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
Number 0.786 606 636 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 28 14:21 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100