64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 017 632 415 262 334 312 72;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 017 632 415 262 334 312 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 035 264 830 524 668 625 44;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 035 264 830 524 668 625 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 070 529 661 049 337 250 88;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 070 529 661 049 337 250 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 141 059 322 098 674 501 76;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 141 059 322 098 674 501 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 282 118 644 197 349 003 52;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 282 118 644 197 349 003 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 564 237 288 394 698 007 04;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 564 237 288 394 698 007 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 128 474 576 789 396 014 08;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 001 128 474 576 789 396 014 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 002 256 949 153 578 792 028 16;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 002 256 949 153 578 792 028 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 004 513 898 307 157 584 056 32;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 004 513 898 307 157 584 056 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 009 027 796 614 315 168 112 64;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 009 027 796 614 315 168 112 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 018 055 593 228 630 336 225 28;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 018 055 593 228 630 336 225 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 036 111 186 457 260 672 450 56;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 036 111 186 457 260 672 450 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 072 222 372 914 521 344 901 12;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 072 222 372 914 521 344 901 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 144 444 745 829 042 689 802 24;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 144 444 745 829 042 689 802 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 288 889 491 658 085 379 604 48;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 288 889 491 658 085 379 604 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 577 778 983 316 170 759 208 96;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 577 778 983 316 170 759 208 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 155 557 966 632 341 518 417 92;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 001 155 557 966 632 341 518 417 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 002 311 115 933 264 683 036 835 84;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 002 311 115 933 264 683 036 835 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 004 622 231 866 529 366 073 671 68;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 004 622 231 866 529 366 073 671 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 009 244 463 733 058 732 147 343 36;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 009 244 463 733 058 732 147 343 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 018 488 927 466 117 464 294 686 72;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 018 488 927 466 117 464 294 686 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 036 977 854 932 234 928 589 373 44;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 036 977 854 932 234 928 589 373 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 073 955 709 864 469 857 178 746 88;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 073 955 709 864 469 857 178 746 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 147 911 419 728 939 714 357 493 76;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 147 911 419 728 939 714 357 493 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 295 822 839 457 879 428 714 987 52;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 295 822 839 457 879 428 714 987 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 591 645 678 915 758 857 429 975 04;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 591 645 678 915 758 857 429 975 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 183 291 357 831 517 714 859 950 08;
  • 28) 0.000 000 000 000 000 000 000 000 000 001 183 291 357 831 517 714 859 950 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 002 366 582 715 663 035 429 719 900 16;
  • 29) 0.000 000 000 000 000 000 000 000 000 002 366 582 715 663 035 429 719 900 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 004 733 165 431 326 070 859 439 800 32;
  • 30) 0.000 000 000 000 000 000 000 000 000 004 733 165 431 326 070 859 439 800 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 009 466 330 862 652 141 718 879 600 64;
  • 31) 0.000 000 000 000 000 000 000 000 000 009 466 330 862 652 141 718 879 600 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 018 932 661 725 304 283 437 759 201 28;
  • 32) 0.000 000 000 000 000 000 000 000 000 018 932 661 725 304 283 437 759 201 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 037 865 323 450 608 566 875 518 402 56;
  • 33) 0.000 000 000 000 000 000 000 000 000 037 865 323 450 608 566 875 518 402 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 075 730 646 901 217 133 751 036 805 12;
  • 34) 0.000 000 000 000 000 000 000 000 000 075 730 646 901 217 133 751 036 805 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 151 461 293 802 434 267 502 073 610 24;
  • 35) 0.000 000 000 000 000 000 000 000 000 151 461 293 802 434 267 502 073 610 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 302 922 587 604 868 535 004 147 220 48;
  • 36) 0.000 000 000 000 000 000 000 000 000 302 922 587 604 868 535 004 147 220 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 605 845 175 209 737 070 008 294 440 96;
  • 37) 0.000 000 000 000 000 000 000 000 000 605 845 175 209 737 070 008 294 440 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 211 690 350 419 474 140 016 588 881 92;
  • 38) 0.000 000 000 000 000 000 000 000 001 211 690 350 419 474 140 016 588 881 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 002 423 380 700 838 948 280 033 177 763 84;
  • 39) 0.000 000 000 000 000 000 000 000 002 423 380 700 838 948 280 033 177 763 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 004 846 761 401 677 896 560 066 355 527 68;
  • 40) 0.000 000 000 000 000 000 000 000 004 846 761 401 677 896 560 066 355 527 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 009 693 522 803 355 793 120 132 711 055 36;
  • 41) 0.000 000 000 000 000 000 000 000 009 693 522 803 355 793 120 132 711 055 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 019 387 045 606 711 586 240 265 422 110 72;
  • 42) 0.000 000 000 000 000 000 000 000 019 387 045 606 711 586 240 265 422 110 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 038 774 091 213 423 172 480 530 844 221 44;
  • 43) 0.000 000 000 000 000 000 000 000 038 774 091 213 423 172 480 530 844 221 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 077 548 182 426 846 344 961 061 688 442 88;
  • 44) 0.000 000 000 000 000 000 000 000 077 548 182 426 846 344 961 061 688 442 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 155 096 364 853 692 689 922 123 376 885 76;
  • 45) 0.000 000 000 000 000 000 000 000 155 096 364 853 692 689 922 123 376 885 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 310 192 729 707 385 379 844 246 753 771 52;
  • 46) 0.000 000 000 000 000 000 000 000 310 192 729 707 385 379 844 246 753 771 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 620 385 459 414 770 759 688 493 507 543 04;
  • 47) 0.000 000 000 000 000 000 000 000 620 385 459 414 770 759 688 493 507 543 04 × 2 = 0 + 0.000 000 000 000 000 000 000 001 240 770 918 829 541 519 376 987 015 086 08;
  • 48) 0.000 000 000 000 000 000 000 001 240 770 918 829 541 519 376 987 015 086 08 × 2 = 0 + 0.000 000 000 000 000 000 000 002 481 541 837 659 083 038 753 974 030 172 16;
  • 49) 0.000 000 000 000 000 000 000 002 481 541 837 659 083 038 753 974 030 172 16 × 2 = 0 + 0.000 000 000 000 000 000 000 004 963 083 675 318 166 077 507 948 060 344 32;
  • 50) 0.000 000 000 000 000 000 000 004 963 083 675 318 166 077 507 948 060 344 32 × 2 = 0 + 0.000 000 000 000 000 000 000 009 926 167 350 636 332 155 015 896 120 688 64;
  • 51) 0.000 000 000 000 000 000 000 009 926 167 350 636 332 155 015 896 120 688 64 × 2 = 0 + 0.000 000 000 000 000 000 000 019 852 334 701 272 664 310 031 792 241 377 28;
  • 52) 0.000 000 000 000 000 000 000 019 852 334 701 272 664 310 031 792 241 377 28 × 2 = 0 + 0.000 000 000 000 000 000 000 039 704 669 402 545 328 620 063 584 482 754 56;
  • 53) 0.000 000 000 000 000 000 000 039 704 669 402 545 328 620 063 584 482 754 56 × 2 = 0 + 0.000 000 000 000 000 000 000 079 409 338 805 090 657 240 127 168 965 509 12;
  • 54) 0.000 000 000 000 000 000 000 079 409 338 805 090 657 240 127 168 965 509 12 × 2 = 0 + 0.000 000 000 000 000 000 000 158 818 677 610 181 314 480 254 337 931 018 24;
  • 55) 0.000 000 000 000 000 000 000 158 818 677 610 181 314 480 254 337 931 018 24 × 2 = 0 + 0.000 000 000 000 000 000 000 317 637 355 220 362 628 960 508 675 862 036 48;
  • 56) 0.000 000 000 000 000 000 000 317 637 355 220 362 628 960 508 675 862 036 48 × 2 = 0 + 0.000 000 000 000 000 000 000 635 274 710 440 725 257 921 017 351 724 072 96;
  • 57) 0.000 000 000 000 000 000 000 635 274 710 440 725 257 921 017 351 724 072 96 × 2 = 0 + 0.000 000 000 000 000 000 001 270 549 420 881 450 515 842 034 703 448 145 92;
  • 58) 0.000 000 000 000 000 000 001 270 549 420 881 450 515 842 034 703 448 145 92 × 2 = 0 + 0.000 000 000 000 000 000 002 541 098 841 762 901 031 684 069 406 896 291 84;
  • 59) 0.000 000 000 000 000 000 002 541 098 841 762 901 031 684 069 406 896 291 84 × 2 = 0 + 0.000 000 000 000 000 000 005 082 197 683 525 802 063 368 138 813 792 583 68;
  • 60) 0.000 000 000 000 000 000 005 082 197 683 525 802 063 368 138 813 792 583 68 × 2 = 0 + 0.000 000 000 000 000 000 010 164 395 367 051 604 126 736 277 627 585 167 36;
  • 61) 0.000 000 000 000 000 000 010 164 395 367 051 604 126 736 277 627 585 167 36 × 2 = 0 + 0.000 000 000 000 000 000 020 328 790 734 103 208 253 472 555 255 170 334 72;
  • 62) 0.000 000 000 000 000 000 020 328 790 734 103 208 253 472 555 255 170 334 72 × 2 = 0 + 0.000 000 000 000 000 000 040 657 581 468 206 416 506 945 110 510 340 669 44;
  • 63) 0.000 000 000 000 000 000 040 657 581 468 206 416 506 945 110 510 340 669 44 × 2 = 0 + 0.000 000 000 000 000 000 081 315 162 936 412 833 013 890 221 020 681 338 88;
  • 64) 0.000 000 000 000 000 000 081 315 162 936 412 833 013 890 221 020 681 338 88 × 2 = 0 + 0.000 000 000 000 000 000 162 630 325 872 825 666 027 780 442 041 362 677 76;
  • 65) 0.000 000 000 000 000 000 162 630 325 872 825 666 027 780 442 041 362 677 76 × 2 = 0 + 0.000 000 000 000 000 000 325 260 651 745 651 332 055 560 884 082 725 355 52;
  • 66) 0.000 000 000 000 000 000 325 260 651 745 651 332 055 560 884 082 725 355 52 × 2 = 0 + 0.000 000 000 000 000 000 650 521 303 491 302 664 111 121 768 165 450 711 04;
  • 67) 0.000 000 000 000 000 000 650 521 303 491 302 664 111 121 768 165 450 711 04 × 2 = 0 + 0.000 000 000 000 000 001 301 042 606 982 605 328 222 243 536 330 901 422 08;
  • 68) 0.000 000 000 000 000 001 301 042 606 982 605 328 222 243 536 330 901 422 08 × 2 = 0 + 0.000 000 000 000 000 002 602 085 213 965 210 656 444 487 072 661 802 844 16;
  • 69) 0.000 000 000 000 000 002 602 085 213 965 210 656 444 487 072 661 802 844 16 × 2 = 0 + 0.000 000 000 000 000 005 204 170 427 930 421 312 888 974 145 323 605 688 32;
  • 70) 0.000 000 000 000 000 005 204 170 427 930 421 312 888 974 145 323 605 688 32 × 2 = 0 + 0.000 000 000 000 000 010 408 340 855 860 842 625 777 948 290 647 211 376 64;
  • 71) 0.000 000 000 000 000 010 408 340 855 860 842 625 777 948 290 647 211 376 64 × 2 = 0 + 0.000 000 000 000 000 020 816 681 711 721 685 251 555 896 581 294 422 753 28;
  • 72) 0.000 000 000 000 000 020 816 681 711 721 685 251 555 896 581 294 422 753 28 × 2 = 0 + 0.000 000 000 000 000 041 633 363 423 443 370 503 111 793 162 588 845 506 56;
  • 73) 0.000 000 000 000 000 041 633 363 423 443 370 503 111 793 162 588 845 506 56 × 2 = 0 + 0.000 000 000 000 000 083 266 726 846 886 741 006 223 586 325 177 691 013 12;
  • 74) 0.000 000 000 000 000 083 266 726 846 886 741 006 223 586 325 177 691 013 12 × 2 = 0 + 0.000 000 000 000 000 166 533 453 693 773 482 012 447 172 650 355 382 026 24;
  • 75) 0.000 000 000 000 000 166 533 453 693 773 482 012 447 172 650 355 382 026 24 × 2 = 0 + 0.000 000 000 000 000 333 066 907 387 546 964 024 894 345 300 710 764 052 48;
  • 76) 0.000 000 000 000 000 333 066 907 387 546 964 024 894 345 300 710 764 052 48 × 2 = 0 + 0.000 000 000 000 000 666 133 814 775 093 928 049 788 690 601 421 528 104 96;
  • 77) 0.000 000 000 000 000 666 133 814 775 093 928 049 788 690 601 421 528 104 96 × 2 = 0 + 0.000 000 000 000 001 332 267 629 550 187 856 099 577 381 202 843 056 209 92;
  • 78) 0.000 000 000 000 001 332 267 629 550 187 856 099 577 381 202 843 056 209 92 × 2 = 0 + 0.000 000 000 000 002 664 535 259 100 375 712 199 154 762 405 686 112 419 84;
  • 79) 0.000 000 000 000 002 664 535 259 100 375 712 199 154 762 405 686 112 419 84 × 2 = 0 + 0.000 000 000 000 005 329 070 518 200 751 424 398 309 524 811 372 224 839 68;
  • 80) 0.000 000 000 000 005 329 070 518 200 751 424 398 309 524 811 372 224 839 68 × 2 = 0 + 0.000 000 000 000 010 658 141 036 401 502 848 796 619 049 622 744 449 679 36;
  • 81) 0.000 000 000 000 010 658 141 036 401 502 848 796 619 049 622 744 449 679 36 × 2 = 0 + 0.000 000 000 000 021 316 282 072 803 005 697 593 238 099 245 488 899 358 72;
  • 82) 0.000 000 000 000 021 316 282 072 803 005 697 593 238 099 245 488 899 358 72 × 2 = 0 + 0.000 000 000 000 042 632 564 145 606 011 395 186 476 198 490 977 798 717 44;
  • 83) 0.000 000 000 000 042 632 564 145 606 011 395 186 476 198 490 977 798 717 44 × 2 = 0 + 0.000 000 000 000 085 265 128 291 212 022 790 372 952 396 981 955 597 434 88;
  • 84) 0.000 000 000 000 085 265 128 291 212 022 790 372 952 396 981 955 597 434 88 × 2 = 0 + 0.000 000 000 000 170 530 256 582 424 045 580 745 904 793 963 911 194 869 76;
  • 85) 0.000 000 000 000 170 530 256 582 424 045 580 745 904 793 963 911 194 869 76 × 2 = 0 + 0.000 000 000 000 341 060 513 164 848 091 161 491 809 587 927 822 389 739 52;
  • 86) 0.000 000 000 000 341 060 513 164 848 091 161 491 809 587 927 822 389 739 52 × 2 = 0 + 0.000 000 000 000 682 121 026 329 696 182 322 983 619 175 855 644 779 479 04;
  • 87) 0.000 000 000 000 682 121 026 329 696 182 322 983 619 175 855 644 779 479 04 × 2 = 0 + 0.000 000 000 001 364 242 052 659 392 364 645 967 238 351 711 289 558 958 08;
  • 88) 0.000 000 000 001 364 242 052 659 392 364 645 967 238 351 711 289 558 958 08 × 2 = 0 + 0.000 000 000 002 728 484 105 318 784 729 291 934 476 703 422 579 117 916 16;
  • 89) 0.000 000 000 002 728 484 105 318 784 729 291 934 476 703 422 579 117 916 16 × 2 = 0 + 0.000 000 000 005 456 968 210 637 569 458 583 868 953 406 845 158 235 832 32;
  • 90) 0.000 000 000 005 456 968 210 637 569 458 583 868 953 406 845 158 235 832 32 × 2 = 0 + 0.000 000 000 010 913 936 421 275 138 917 167 737 906 813 690 316 471 664 64;
  • 91) 0.000 000 000 010 913 936 421 275 138 917 167 737 906 813 690 316 471 664 64 × 2 = 0 + 0.000 000 000 021 827 872 842 550 277 834 335 475 813 627 380 632 943 329 28;
  • 92) 0.000 000 000 021 827 872 842 550 277 834 335 475 813 627 380 632 943 329 28 × 2 = 0 + 0.000 000 000 043 655 745 685 100 555 668 670 951 627 254 761 265 886 658 56;
  • 93) 0.000 000 000 043 655 745 685 100 555 668 670 951 627 254 761 265 886 658 56 × 2 = 0 + 0.000 000 000 087 311 491 370 201 111 337 341 903 254 509 522 531 773 317 12;
  • 94) 0.000 000 000 087 311 491 370 201 111 337 341 903 254 509 522 531 773 317 12 × 2 = 0 + 0.000 000 000 174 622 982 740 402 222 674 683 806 509 019 045 063 546 634 24;
  • 95) 0.000 000 000 174 622 982 740 402 222 674 683 806 509 019 045 063 546 634 24 × 2 = 0 + 0.000 000 000 349 245 965 480 804 445 349 367 613 018 038 090 127 093 268 48;
  • 96) 0.000 000 000 349 245 965 480 804 445 349 367 613 018 038 090 127 093 268 48 × 2 = 0 + 0.000 000 000 698 491 930 961 608 890 698 735 226 036 076 180 254 186 536 96;
  • 97) 0.000 000 000 698 491 930 961 608 890 698 735 226 036 076 180 254 186 536 96 × 2 = 0 + 0.000 000 001 396 983 861 923 217 781 397 470 452 072 152 360 508 373 073 92;
  • 98) 0.000 000 001 396 983 861 923 217 781 397 470 452 072 152 360 508 373 073 92 × 2 = 0 + 0.000 000 002 793 967 723 846 435 562 794 940 904 144 304 721 016 746 147 84;
  • 99) 0.000 000 002 793 967 723 846 435 562 794 940 904 144 304 721 016 746 147 84 × 2 = 0 + 0.000 000 005 587 935 447 692 871 125 589 881 808 288 609 442 033 492 295 68;
  • 100) 0.000 000 005 587 935 447 692 871 125 589 881 808 288 609 442 033 492 295 68 × 2 = 0 + 0.000 000 011 175 870 895 385 742 251 179 763 616 577 218 884 066 984 591 36;
  • 101) 0.000 000 011 175 870 895 385 742 251 179 763 616 577 218 884 066 984 591 36 × 2 = 0 + 0.000 000 022 351 741 790 771 484 502 359 527 233 154 437 768 133 969 182 72;
  • 102) 0.000 000 022 351 741 790 771 484 502 359 527 233 154 437 768 133 969 182 72 × 2 = 0 + 0.000 000 044 703 483 581 542 969 004 719 054 466 308 875 536 267 938 365 44;
  • 103) 0.000 000 044 703 483 581 542 969 004 719 054 466 308 875 536 267 938 365 44 × 2 = 0 + 0.000 000 089 406 967 163 085 938 009 438 108 932 617 751 072 535 876 730 88;
  • 104) 0.000 000 089 406 967 163 085 938 009 438 108 932 617 751 072 535 876 730 88 × 2 = 0 + 0.000 000 178 813 934 326 171 876 018 876 217 865 235 502 145 071 753 461 76;
  • 105) 0.000 000 178 813 934 326 171 876 018 876 217 865 235 502 145 071 753 461 76 × 2 = 0 + 0.000 000 357 627 868 652 343 752 037 752 435 730 471 004 290 143 506 923 52;
  • 106) 0.000 000 357 627 868 652 343 752 037 752 435 730 471 004 290 143 506 923 52 × 2 = 0 + 0.000 000 715 255 737 304 687 504 075 504 871 460 942 008 580 287 013 847 04;
  • 107) 0.000 000 715 255 737 304 687 504 075 504 871 460 942 008 580 287 013 847 04 × 2 = 0 + 0.000 001 430 511 474 609 375 008 151 009 742 921 884 017 160 574 027 694 08;
  • 108) 0.000 001 430 511 474 609 375 008 151 009 742 921 884 017 160 574 027 694 08 × 2 = 0 + 0.000 002 861 022 949 218 750 016 302 019 485 843 768 034 321 148 055 388 16;
  • 109) 0.000 002 861 022 949 218 750 016 302 019 485 843 768 034 321 148 055 388 16 × 2 = 0 + 0.000 005 722 045 898 437 500 032 604 038 971 687 536 068 642 296 110 776 32;
  • 110) 0.000 005 722 045 898 437 500 032 604 038 971 687 536 068 642 296 110 776 32 × 2 = 0 + 0.000 011 444 091 796 875 000 065 208 077 943 375 072 137 284 592 221 552 64;
  • 111) 0.000 011 444 091 796 875 000 065 208 077 943 375 072 137 284 592 221 552 64 × 2 = 0 + 0.000 022 888 183 593 750 000 130 416 155 886 750 144 274 569 184 443 105 28;
  • 112) 0.000 022 888 183 593 750 000 130 416 155 886 750 144 274 569 184 443 105 28 × 2 = 0 + 0.000 045 776 367 187 500 000 260 832 311 773 500 288 549 138 368 886 210 56;
  • 113) 0.000 045 776 367 187 500 000 260 832 311 773 500 288 549 138 368 886 210 56 × 2 = 0 + 0.000 091 552 734 375 000 000 521 664 623 547 000 577 098 276 737 772 421 12;
  • 114) 0.000 091 552 734 375 000 000 521 664 623 547 000 577 098 276 737 772 421 12 × 2 = 0 + 0.000 183 105 468 750 000 001 043 329 247 094 001 154 196 553 475 544 842 24;
  • 115) 0.000 183 105 468 750 000 001 043 329 247 094 001 154 196 553 475 544 842 24 × 2 = 0 + 0.000 366 210 937 500 000 002 086 658 494 188 002 308 393 106 951 089 684 48;
  • 116) 0.000 366 210 937 500 000 002 086 658 494 188 002 308 393 106 951 089 684 48 × 2 = 0 + 0.000 732 421 875 000 000 004 173 316 988 376 004 616 786 213 902 179 368 96;
  • 117) 0.000 732 421 875 000 000 004 173 316 988 376 004 616 786 213 902 179 368 96 × 2 = 0 + 0.001 464 843 750 000 000 008 346 633 976 752 009 233 572 427 804 358 737 92;
  • 118) 0.001 464 843 750 000 000 008 346 633 976 752 009 233 572 427 804 358 737 92 × 2 = 0 + 0.002 929 687 500 000 000 016 693 267 953 504 018 467 144 855 608 717 475 84;
  • 119) 0.002 929 687 500 000 000 016 693 267 953 504 018 467 144 855 608 717 475 84 × 2 = 0 + 0.005 859 375 000 000 000 033 386 535 907 008 036 934 289 711 217 434 951 68;
  • 120) 0.005 859 375 000 000 000 033 386 535 907 008 036 934 289 711 217 434 951 68 × 2 = 0 + 0.011 718 750 000 000 000 066 773 071 814 016 073 868 579 422 434 869 903 36;
  • 121) 0.011 718 750 000 000 000 066 773 071 814 016 073 868 579 422 434 869 903 36 × 2 = 0 + 0.023 437 500 000 000 000 133 546 143 628 032 147 737 158 844 869 739 806 72;
  • 122) 0.023 437 500 000 000 000 133 546 143 628 032 147 737 158 844 869 739 806 72 × 2 = 0 + 0.046 875 000 000 000 000 267 092 287 256 064 295 474 317 689 739 479 613 44;
  • 123) 0.046 875 000 000 000 000 267 092 287 256 064 295 474 317 689 739 479 613 44 × 2 = 0 + 0.093 750 000 000 000 000 534 184 574 512 128 590 948 635 379 478 959 226 88;
  • 124) 0.093 750 000 000 000 000 534 184 574 512 128 590 948 635 379 478 959 226 88 × 2 = 0 + 0.187 500 000 000 000 001 068 369 149 024 257 181 897 270 758 957 918 453 76;
  • 125) 0.187 500 000 000 000 001 068 369 149 024 257 181 897 270 758 957 918 453 76 × 2 = 0 + 0.375 000 000 000 000 002 136 738 298 048 514 363 794 541 517 915 836 907 52;
  • 126) 0.375 000 000 000 000 002 136 738 298 048 514 363 794 541 517 915 836 907 52 × 2 = 0 + 0.750 000 000 000 000 004 273 476 596 097 028 727 589 083 035 831 673 815 04;
  • 127) 0.750 000 000 000 000 004 273 476 596 097 028 727 589 083 035 831 673 815 04 × 2 = 1 + 0.500 000 000 000 000 008 546 953 192 194 057 455 178 166 071 663 347 630 08;
  • 128) 0.500 000 000 000 000 008 546 953 192 194 057 455 178 166 071 663 347 630 08 × 2 = 1 + 0.000 000 000 000 000 017 093 906 384 388 114 910 356 332 143 326 695 260 16;
  • 129) 0.000 000 000 000 000 017 093 906 384 388 114 910 356 332 143 326 695 260 16 × 2 = 0 + 0.000 000 000 000 000 034 187 812 768 776 229 820 712 664 286 653 390 520 32;
  • 130) 0.000 000 000 000 000 034 187 812 768 776 229 820 712 664 286 653 390 520 32 × 2 = 0 + 0.000 000 000 000 000 068 375 625 537 552 459 641 425 328 573 306 781 040 64;
  • 131) 0.000 000 000 000 000 068 375 625 537 552 459 641 425 328 573 306 781 040 64 × 2 = 0 + 0.000 000 000 000 000 136 751 251 075 104 919 282 850 657 146 613 562 081 28;
  • 132) 0.000 000 000 000 000 136 751 251 075 104 919 282 850 657 146 613 562 081 28 × 2 = 0 + 0.000 000 000 000 000 273 502 502 150 209 838 565 701 314 293 227 124 162 56;
  • 133) 0.000 000 000 000 000 273 502 502 150 209 838 565 701 314 293 227 124 162 56 × 2 = 0 + 0.000 000 000 000 000 547 005 004 300 419 677 131 402 628 586 454 248 325 12;
  • 134) 0.000 000 000 000 000 547 005 004 300 419 677 131 402 628 586 454 248 325 12 × 2 = 0 + 0.000 000 000 000 001 094 010 008 600 839 354 262 805 257 172 908 496 650 24;
  • 135) 0.000 000 000 000 001 094 010 008 600 839 354 262 805 257 172 908 496 650 24 × 2 = 0 + 0.000 000 000 000 002 188 020 017 201 678 708 525 610 514 345 816 993 300 48;
  • 136) 0.000 000 000 000 002 188 020 017 201 678 708 525 610 514 345 816 993 300 48 × 2 = 0 + 0.000 000 000 000 004 376 040 034 403 357 417 051 221 028 691 633 986 600 96;
  • 137) 0.000 000 000 000 004 376 040 034 403 357 417 051 221 028 691 633 986 600 96 × 2 = 0 + 0.000 000 000 000 008 752 080 068 806 714 834 102 442 057 383 267 973 201 92;
  • 138) 0.000 000 000 000 008 752 080 068 806 714 834 102 442 057 383 267 973 201 92 × 2 = 0 + 0.000 000 000 000 017 504 160 137 613 429 668 204 884 114 766 535 946 403 84;
  • 139) 0.000 000 000 000 017 504 160 137 613 429 668 204 884 114 766 535 946 403 84 × 2 = 0 + 0.000 000 000 000 035 008 320 275 226 859 336 409 768 229 533 071 892 807 68;
  • 140) 0.000 000 000 000 035 008 320 275 226 859 336 409 768 229 533 071 892 807 68 × 2 = 0 + 0.000 000 000 000 070 016 640 550 453 718 672 819 536 459 066 143 785 615 36;
  • 141) 0.000 000 000 000 070 016 640 550 453 718 672 819 536 459 066 143 785 615 36 × 2 = 0 + 0.000 000 000 000 140 033 281 100 907 437 345 639 072 918 132 287 571 230 72;
  • 142) 0.000 000 000 000 140 033 281 100 907 437 345 639 072 918 132 287 571 230 72 × 2 = 0 + 0.000 000 000 000 280 066 562 201 814 874 691 278 145 836 264 575 142 461 44;
  • 143) 0.000 000 000 000 280 066 562 201 814 874 691 278 145 836 264 575 142 461 44 × 2 = 0 + 0.000 000 000 000 560 133 124 403 629 749 382 556 291 672 529 150 284 922 88;
  • 144) 0.000 000 000 000 560 133 124 403 629 749 382 556 291 672 529 150 284 922 88 × 2 = 0 + 0.000 000 000 001 120 266 248 807 259 498 765 112 583 345 058 300 569 845 76;
  • 145) 0.000 000 000 001 120 266 248 807 259 498 765 112 583 345 058 300 569 845 76 × 2 = 0 + 0.000 000 000 002 240 532 497 614 518 997 530 225 166 690 116 601 139 691 52;
  • 146) 0.000 000 000 002 240 532 497 614 518 997 530 225 166 690 116 601 139 691 52 × 2 = 0 + 0.000 000 000 004 481 064 995 229 037 995 060 450 333 380 233 202 279 383 04;
  • 147) 0.000 000 000 004 481 064 995 229 037 995 060 450 333 380 233 202 279 383 04 × 2 = 0 + 0.000 000 000 008 962 129 990 458 075 990 120 900 666 760 466 404 558 766 08;
  • 148) 0.000 000 000 008 962 129 990 458 075 990 120 900 666 760 466 404 558 766 08 × 2 = 0 + 0.000 000 000 017 924 259 980 916 151 980 241 801 333 520 932 809 117 532 16;
  • 149) 0.000 000 000 017 924 259 980 916 151 980 241 801 333 520 932 809 117 532 16 × 2 = 0 + 0.000 000 000 035 848 519 961 832 303 960 483 602 667 041 865 618 235 064 32;
  • 150) 0.000 000 000 035 848 519 961 832 303 960 483 602 667 041 865 618 235 064 32 × 2 = 0 + 0.000 000 000 071 697 039 923 664 607 920 967 205 334 083 731 236 470 128 64;
  • 151) 0.000 000 000 071 697 039 923 664 607 920 967 205 334 083 731 236 470 128 64 × 2 = 0 + 0.000 000 000 143 394 079 847 329 215 841 934 410 668 167 462 472 940 257 28;
  • 152) 0.000 000 000 143 394 079 847 329 215 841 934 410 668 167 462 472 940 257 28 × 2 = 0 + 0.000 000 000 286 788 159 694 658 431 683 868 821 336 334 924 945 880 514 56;
  • 153) 0.000 000 000 286 788 159 694 658 431 683 868 821 336 334 924 945 880 514 56 × 2 = 0 + 0.000 000 000 573 576 319 389 316 863 367 737 642 672 669 849 891 761 029 12;
  • 154) 0.000 000 000 573 576 319 389 316 863 367 737 642 672 669 849 891 761 029 12 × 2 = 0 + 0.000 000 001 147 152 638 778 633 726 735 475 285 345 339 699 783 522 058 24;
  • 155) 0.000 000 001 147 152 638 778 633 726 735 475 285 345 339 699 783 522 058 24 × 2 = 0 + 0.000 000 002 294 305 277 557 267 453 470 950 570 690 679 399 567 044 116 48;
  • 156) 0.000 000 002 294 305 277 557 267 453 470 950 570 690 679 399 567 044 116 48 × 2 = 0 + 0.000 000 004 588 610 555 114 534 906 941 901 141 381 358 799 134 088 232 96;
  • 157) 0.000 000 004 588 610 555 114 534 906 941 901 141 381 358 799 134 088 232 96 × 2 = 0 + 0.000 000 009 177 221 110 229 069 813 883 802 282 762 717 598 268 176 465 92;
  • 158) 0.000 000 009 177 221 110 229 069 813 883 802 282 762 717 598 268 176 465 92 × 2 = 0 + 0.000 000 018 354 442 220 458 139 627 767 604 565 525 435 196 536 352 931 84;
  • 159) 0.000 000 018 354 442 220 458 139 627 767 604 565 525 435 196 536 352 931 84 × 2 = 0 + 0.000 000 036 708 884 440 916 279 255 535 209 131 050 870 393 072 705 863 68;
  • 160) 0.000 000 036 708 884 440 916 279 255 535 209 131 050 870 393 072 705 863 68 × 2 = 0 + 0.000 000 073 417 768 881 832 558 511 070 418 262 101 740 786 145 411 727 36;
  • 161) 0.000 000 073 417 768 881 832 558 511 070 418 262 101 740 786 145 411 727 36 × 2 = 0 + 0.000 000 146 835 537 763 665 117 022 140 836 524 203 481 572 290 823 454 72;
  • 162) 0.000 000 146 835 537 763 665 117 022 140 836 524 203 481 572 290 823 454 72 × 2 = 0 + 0.000 000 293 671 075 527 330 234 044 281 673 048 406 963 144 581 646 909 44;
  • 163) 0.000 000 293 671 075 527 330 234 044 281 673 048 406 963 144 581 646 909 44 × 2 = 0 + 0.000 000 587 342 151 054 660 468 088 563 346 096 813 926 289 163 293 818 88;
  • 164) 0.000 000 587 342 151 054 660 468 088 563 346 096 813 926 289 163 293 818 88 × 2 = 0 + 0.000 001 174 684 302 109 320 936 177 126 692 193 627 852 578 326 587 637 76;
  • 165) 0.000 001 174 684 302 109 320 936 177 126 692 193 627 852 578 326 587 637 76 × 2 = 0 + 0.000 002 349 368 604 218 641 872 354 253 384 387 255 705 156 653 175 275 52;
  • 166) 0.000 002 349 368 604 218 641 872 354 253 384 387 255 705 156 653 175 275 52 × 2 = 0 + 0.000 004 698 737 208 437 283 744 708 506 768 774 511 410 313 306 350 551 04;
  • 167) 0.000 004 698 737 208 437 283 744 708 506 768 774 511 410 313 306 350 551 04 × 2 = 0 + 0.000 009 397 474 416 874 567 489 417 013 537 549 022 820 626 612 701 102 08;
  • 168) 0.000 009 397 474 416 874 567 489 417 013 537 549 022 820 626 612 701 102 08 × 2 = 0 + 0.000 018 794 948 833 749 134 978 834 027 075 098 045 641 253 225 402 204 16;
  • 169) 0.000 018 794 948 833 749 134 978 834 027 075 098 045 641 253 225 402 204 16 × 2 = 0 + 0.000 037 589 897 667 498 269 957 668 054 150 196 091 282 506 450 804 408 32;
  • 170) 0.000 037 589 897 667 498 269 957 668 054 150 196 091 282 506 450 804 408 32 × 2 = 0 + 0.000 075 179 795 334 996 539 915 336 108 300 392 182 565 012 901 608 816 64;
  • 171) 0.000 075 179 795 334 996 539 915 336 108 300 392 182 565 012 901 608 816 64 × 2 = 0 + 0.000 150 359 590 669 993 079 830 672 216 600 784 365 130 025 803 217 633 28;
  • 172) 0.000 150 359 590 669 993 079 830 672 216 600 784 365 130 025 803 217 633 28 × 2 = 0 + 0.000 300 719 181 339 986 159 661 344 433 201 568 730 260 051 606 435 266 56;
  • 173) 0.000 300 719 181 339 986 159 661 344 433 201 568 730 260 051 606 435 266 56 × 2 = 0 + 0.000 601 438 362 679 972 319 322 688 866 403 137 460 520 103 212 870 533 12;
  • 174) 0.000 601 438 362 679 972 319 322 688 866 403 137 460 520 103 212 870 533 12 × 2 = 0 + 0.001 202 876 725 359 944 638 645 377 732 806 274 921 040 206 425 741 066 24;
  • 175) 0.001 202 876 725 359 944 638 645 377 732 806 274 921 040 206 425 741 066 24 × 2 = 0 + 0.002 405 753 450 719 889 277 290 755 465 612 549 842 080 412 851 482 132 48;
  • 176) 0.002 405 753 450 719 889 277 290 755 465 612 549 842 080 412 851 482 132 48 × 2 = 0 + 0.004 811 506 901 439 778 554 581 510 931 225 099 684 160 825 702 964 264 96;
  • 177) 0.004 811 506 901 439 778 554 581 510 931 225 099 684 160 825 702 964 264 96 × 2 = 0 + 0.009 623 013 802 879 557 109 163 021 862 450 199 368 321 651 405 928 529 92;
  • 178) 0.009 623 013 802 879 557 109 163 021 862 450 199 368 321 651 405 928 529 92 × 2 = 0 + 0.019 246 027 605 759 114 218 326 043 724 900 398 736 643 302 811 857 059 84;
  • 179) 0.019 246 027 605 759 114 218 326 043 724 900 398 736 643 302 811 857 059 84 × 2 = 0 + 0.038 492 055 211 518 228 436 652 087 449 800 797 473 286 605 623 714 119 68;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000(2) × 20 =


1.1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) × 2-127


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-127 + 2(11-1) - 1 =


(-127 + 1 023)(10) =


896(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 896 ÷ 2 = 448 + 0;
  • 448 ÷ 2 = 224 + 0;
  • 224 ÷ 2 = 112 + 0;
  • 112 ÷ 2 = 56 + 0;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


896(10) =


011 1000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1000 0000


Mantissa (52 bits) =
1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 008 816 207 631 167 156 36 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1000 0000 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 6.728 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:57 UTC (GMT)
Number 0.066 666 666 666 666 666 666 667 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:57 UTC (GMT)
Number 84.25 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:57 UTC (GMT)
Number 54 459 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:57 UTC (GMT)
Number -69.812 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
Number 420 746 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
Number 314 159 925 558 720 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
Number 1.234 567 890 123 456 77 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
Number 799 942 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
Number 18.027 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 11 17:56 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100