Convert Decimal -99.452 599 999 999 989 695 1 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal -99.452 599 999 999 989 695 1(10) to 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

What are the steps to convert decimal number
-99.452 599 999 999 989 695 1(10) to 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-99.452 599 999 999 989 695 1| = 99.452 599 999 999 989 695 1


2. First, convert to binary (in base 2) the integer part: 99.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 99 ÷ 2 = 49 + 1;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

99(10) =


110 0011(2)


4. Convert to binary (base 2) the fractional part: 0.452 599 999 999 989 695 1.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.452 599 999 999 989 695 1 × 2 = 0 + 0.905 199 999 999 979 390 2;
  • 2) 0.905 199 999 999 979 390 2 × 2 = 1 + 0.810 399 999 999 958 780 4;
  • 3) 0.810 399 999 999 958 780 4 × 2 = 1 + 0.620 799 999 999 917 560 8;
  • 4) 0.620 799 999 999 917 560 8 × 2 = 1 + 0.241 599 999 999 835 121 6;
  • 5) 0.241 599 999 999 835 121 6 × 2 = 0 + 0.483 199 999 999 670 243 2;
  • 6) 0.483 199 999 999 670 243 2 × 2 = 0 + 0.966 399 999 999 340 486 4;
  • 7) 0.966 399 999 999 340 486 4 × 2 = 1 + 0.932 799 999 998 680 972 8;
  • 8) 0.932 799 999 998 680 972 8 × 2 = 1 + 0.865 599 999 997 361 945 6;
  • 9) 0.865 599 999 997 361 945 6 × 2 = 1 + 0.731 199 999 994 723 891 2;
  • 10) 0.731 199 999 994 723 891 2 × 2 = 1 + 0.462 399 999 989 447 782 4;
  • 11) 0.462 399 999 989 447 782 4 × 2 = 0 + 0.924 799 999 978 895 564 8;
  • 12) 0.924 799 999 978 895 564 8 × 2 = 1 + 0.849 599 999 957 791 129 6;
  • 13) 0.849 599 999 957 791 129 6 × 2 = 1 + 0.699 199 999 915 582 259 2;
  • 14) 0.699 199 999 915 582 259 2 × 2 = 1 + 0.398 399 999 831 164 518 4;
  • 15) 0.398 399 999 831 164 518 4 × 2 = 0 + 0.796 799 999 662 329 036 8;
  • 16) 0.796 799 999 662 329 036 8 × 2 = 1 + 0.593 599 999 324 658 073 6;
  • 17) 0.593 599 999 324 658 073 6 × 2 = 1 + 0.187 199 998 649 316 147 2;
  • 18) 0.187 199 998 649 316 147 2 × 2 = 0 + 0.374 399 997 298 632 294 4;
  • 19) 0.374 399 997 298 632 294 4 × 2 = 0 + 0.748 799 994 597 264 588 8;
  • 20) 0.748 799 994 597 264 588 8 × 2 = 1 + 0.497 599 989 194 529 177 6;
  • 21) 0.497 599 989 194 529 177 6 × 2 = 0 + 0.995 199 978 389 058 355 2;
  • 22) 0.995 199 978 389 058 355 2 × 2 = 1 + 0.990 399 956 778 116 710 4;
  • 23) 0.990 399 956 778 116 710 4 × 2 = 1 + 0.980 799 913 556 233 420 8;
  • 24) 0.980 799 913 556 233 420 8 × 2 = 1 + 0.961 599 827 112 466 841 6;
  • 25) 0.961 599 827 112 466 841 6 × 2 = 1 + 0.923 199 654 224 933 683 2;
  • 26) 0.923 199 654 224 933 683 2 × 2 = 1 + 0.846 399 308 449 867 366 4;
  • 27) 0.846 399 308 449 867 366 4 × 2 = 1 + 0.692 798 616 899 734 732 8;
  • 28) 0.692 798 616 899 734 732 8 × 2 = 1 + 0.385 597 233 799 469 465 6;
  • 29) 0.385 597 233 799 469 465 6 × 2 = 0 + 0.771 194 467 598 938 931 2;
  • 30) 0.771 194 467 598 938 931 2 × 2 = 1 + 0.542 388 935 197 877 862 4;
  • 31) 0.542 388 935 197 877 862 4 × 2 = 1 + 0.084 777 870 395 755 724 8;
  • 32) 0.084 777 870 395 755 724 8 × 2 = 0 + 0.169 555 740 791 511 449 6;
  • 33) 0.169 555 740 791 511 449 6 × 2 = 0 + 0.339 111 481 583 022 899 2;
  • 34) 0.339 111 481 583 022 899 2 × 2 = 0 + 0.678 222 963 166 045 798 4;
  • 35) 0.678 222 963 166 045 798 4 × 2 = 1 + 0.356 445 926 332 091 596 8;
  • 36) 0.356 445 926 332 091 596 8 × 2 = 0 + 0.712 891 852 664 183 193 6;
  • 37) 0.712 891 852 664 183 193 6 × 2 = 1 + 0.425 783 705 328 366 387 2;
  • 38) 0.425 783 705 328 366 387 2 × 2 = 0 + 0.851 567 410 656 732 774 4;
  • 39) 0.851 567 410 656 732 774 4 × 2 = 1 + 0.703 134 821 313 465 548 8;
  • 40) 0.703 134 821 313 465 548 8 × 2 = 1 + 0.406 269 642 626 931 097 6;
  • 41) 0.406 269 642 626 931 097 6 × 2 = 0 + 0.812 539 285 253 862 195 2;
  • 42) 0.812 539 285 253 862 195 2 × 2 = 1 + 0.625 078 570 507 724 390 4;
  • 43) 0.625 078 570 507 724 390 4 × 2 = 1 + 0.250 157 141 015 448 780 8;
  • 44) 0.250 157 141 015 448 780 8 × 2 = 0 + 0.500 314 282 030 897 561 6;
  • 45) 0.500 314 282 030 897 561 6 × 2 = 1 + 0.000 628 564 061 795 123 2;
  • 46) 0.000 628 564 061 795 123 2 × 2 = 0 + 0.001 257 128 123 590 246 4;
  • 47) 0.001 257 128 123 590 246 4 × 2 = 0 + 0.002 514 256 247 180 492 8;
  • 48) 0.002 514 256 247 180 492 8 × 2 = 0 + 0.005 028 512 494 360 985 6;
  • 49) 0.005 028 512 494 360 985 6 × 2 = 0 + 0.010 057 024 988 721 971 2;
  • 50) 0.010 057 024 988 721 971 2 × 2 = 0 + 0.020 114 049 977 443 942 4;
  • 51) 0.020 114 049 977 443 942 4 × 2 = 0 + 0.040 228 099 954 887 884 8;
  • 52) 0.040 228 099 954 887 884 8 × 2 = 0 + 0.080 456 199 909 775 769 6;
  • 53) 0.080 456 199 909 775 769 6 × 2 = 0 + 0.160 912 399 819 551 539 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.452 599 999 999 989 695 1(10) =


0.0111 0011 1101 1101 1001 0111 1111 0110 0010 1011 0110 1000 0000 0(2)

6. Positive number before normalization:

99.452 599 999 999 989 695 1(10) =


110 0011.0111 0011 1101 1101 1001 0111 1111 0110 0010 1011 0110 1000 0000 0(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the left, so that only one non zero digit remains to the left of it:


99.452 599 999 999 989 695 1(10) =


110 0011.0111 0011 1101 1101 1001 0111 1111 0110 0010 1011 0110 1000 0000 0(2) =


110 0011.0111 0011 1101 1101 1001 0111 1111 0110 0010 1011 0110 1000 0000 0(2) × 20 =


1.1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010 0000 000(2) × 26


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 6


Mantissa (not normalized):
1.1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010 0000 000


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


6 + 2(11-1) - 1 =


(6 + 1 023)(10) =


1 029(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 029 ÷ 2 = 514 + 1;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1029(10) =


100 0000 0101(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010 000 0000 =


1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0101


Mantissa (52 bits) =
1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010


Decimal number -99.452 599 999 999 989 695 1 converted to 64 bit double precision IEEE 754 binary floating point representation:

1 - 100 0000 0101 - 1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1010


How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100