64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: -9.954 034 474 611 633 622 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -9.954 034 474 611 633 622(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-9.954 034 474 611 633 622| = 9.954 034 474 611 633 622

2. First, convert to binary (in base 2) the integer part: 9.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


9(10) =


1001(2)


4. Convert to binary (base 2) the fractional part: 0.954 034 474 611 633 622.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.954 034 474 611 633 622 × 2 = 1 + 0.908 068 949 223 267 244;
  • 2) 0.908 068 949 223 267 244 × 2 = 1 + 0.816 137 898 446 534 488;
  • 3) 0.816 137 898 446 534 488 × 2 = 1 + 0.632 275 796 893 068 976;
  • 4) 0.632 275 796 893 068 976 × 2 = 1 + 0.264 551 593 786 137 952;
  • 5) 0.264 551 593 786 137 952 × 2 = 0 + 0.529 103 187 572 275 904;
  • 6) 0.529 103 187 572 275 904 × 2 = 1 + 0.058 206 375 144 551 808;
  • 7) 0.058 206 375 144 551 808 × 2 = 0 + 0.116 412 750 289 103 616;
  • 8) 0.116 412 750 289 103 616 × 2 = 0 + 0.232 825 500 578 207 232;
  • 9) 0.232 825 500 578 207 232 × 2 = 0 + 0.465 651 001 156 414 464;
  • 10) 0.465 651 001 156 414 464 × 2 = 0 + 0.931 302 002 312 828 928;
  • 11) 0.931 302 002 312 828 928 × 2 = 1 + 0.862 604 004 625 657 856;
  • 12) 0.862 604 004 625 657 856 × 2 = 1 + 0.725 208 009 251 315 712;
  • 13) 0.725 208 009 251 315 712 × 2 = 1 + 0.450 416 018 502 631 424;
  • 14) 0.450 416 018 502 631 424 × 2 = 0 + 0.900 832 037 005 262 848;
  • 15) 0.900 832 037 005 262 848 × 2 = 1 + 0.801 664 074 010 525 696;
  • 16) 0.801 664 074 010 525 696 × 2 = 1 + 0.603 328 148 021 051 392;
  • 17) 0.603 328 148 021 051 392 × 2 = 1 + 0.206 656 296 042 102 784;
  • 18) 0.206 656 296 042 102 784 × 2 = 0 + 0.413 312 592 084 205 568;
  • 19) 0.413 312 592 084 205 568 × 2 = 0 + 0.826 625 184 168 411 136;
  • 20) 0.826 625 184 168 411 136 × 2 = 1 + 0.653 250 368 336 822 272;
  • 21) 0.653 250 368 336 822 272 × 2 = 1 + 0.306 500 736 673 644 544;
  • 22) 0.306 500 736 673 644 544 × 2 = 0 + 0.613 001 473 347 289 088;
  • 23) 0.613 001 473 347 289 088 × 2 = 1 + 0.226 002 946 694 578 176;
  • 24) 0.226 002 946 694 578 176 × 2 = 0 + 0.452 005 893 389 156 352;
  • 25) 0.452 005 893 389 156 352 × 2 = 0 + 0.904 011 786 778 312 704;
  • 26) 0.904 011 786 778 312 704 × 2 = 1 + 0.808 023 573 556 625 408;
  • 27) 0.808 023 573 556 625 408 × 2 = 1 + 0.616 047 147 113 250 816;
  • 28) 0.616 047 147 113 250 816 × 2 = 1 + 0.232 094 294 226 501 632;
  • 29) 0.232 094 294 226 501 632 × 2 = 0 + 0.464 188 588 453 003 264;
  • 30) 0.464 188 588 453 003 264 × 2 = 0 + 0.928 377 176 906 006 528;
  • 31) 0.928 377 176 906 006 528 × 2 = 1 + 0.856 754 353 812 013 056;
  • 32) 0.856 754 353 812 013 056 × 2 = 1 + 0.713 508 707 624 026 112;
  • 33) 0.713 508 707 624 026 112 × 2 = 1 + 0.427 017 415 248 052 224;
  • 34) 0.427 017 415 248 052 224 × 2 = 0 + 0.854 034 830 496 104 448;
  • 35) 0.854 034 830 496 104 448 × 2 = 1 + 0.708 069 660 992 208 896;
  • 36) 0.708 069 660 992 208 896 × 2 = 1 + 0.416 139 321 984 417 792;
  • 37) 0.416 139 321 984 417 792 × 2 = 0 + 0.832 278 643 968 835 584;
  • 38) 0.832 278 643 968 835 584 × 2 = 1 + 0.664 557 287 937 671 168;
  • 39) 0.664 557 287 937 671 168 × 2 = 1 + 0.329 114 575 875 342 336;
  • 40) 0.329 114 575 875 342 336 × 2 = 0 + 0.658 229 151 750 684 672;
  • 41) 0.658 229 151 750 684 672 × 2 = 1 + 0.316 458 303 501 369 344;
  • 42) 0.316 458 303 501 369 344 × 2 = 0 + 0.632 916 607 002 738 688;
  • 43) 0.632 916 607 002 738 688 × 2 = 1 + 0.265 833 214 005 477 376;
  • 44) 0.265 833 214 005 477 376 × 2 = 0 + 0.531 666 428 010 954 752;
  • 45) 0.531 666 428 010 954 752 × 2 = 1 + 0.063 332 856 021 909 504;
  • 46) 0.063 332 856 021 909 504 × 2 = 0 + 0.126 665 712 043 819 008;
  • 47) 0.126 665 712 043 819 008 × 2 = 0 + 0.253 331 424 087 638 016;
  • 48) 0.253 331 424 087 638 016 × 2 = 0 + 0.506 662 848 175 276 032;
  • 49) 0.506 662 848 175 276 032 × 2 = 1 + 0.013 325 696 350 552 064;
  • 50) 0.013 325 696 350 552 064 × 2 = 0 + 0.026 651 392 701 104 128;
  • 51) 0.026 651 392 701 104 128 × 2 = 0 + 0.053 302 785 402 208 256;
  • 52) 0.053 302 785 402 208 256 × 2 = 0 + 0.106 605 570 804 416 512;
  • 53) 0.106 605 570 804 416 512 × 2 = 0 + 0.213 211 141 608 833 024;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.954 034 474 611 633 622(10) =


0.1111 0100 0011 1011 1001 1010 0111 0011 1011 0110 1010 1000 1000 0(2)


6. Positive number before normalization:

9.954 034 474 611 633 622(10) =


1001.1111 0100 0011 1011 1001 1010 0111 0011 1011 0110 1010 1000 1000 0(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the left, so that only one non zero digit remains to the left of it:


9.954 034 474 611 633 622(10) =


1001.1111 0100 0011 1011 1001 1010 0111 0011 1011 0110 1010 1000 1000 0(2) =


1001.1111 0100 0011 1011 1001 1010 0111 0011 1011 0110 1010 1000 1000 0(2) × 20 =


1.0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001 0000(2) × 23


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 3


Mantissa (not normalized):
1.0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001 0000


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


3 + 2(11-1) - 1 =


(3 + 1 023)(10) =


1 026(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 026 ÷ 2 = 513 + 0;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1026(10) =


100 0000 0010(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001 0000 =


0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0010


Mantissa (52 bits) =
0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001


The base ten decimal number -9.954 034 474 611 633 622 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 0010 - 0011 1110 1000 0111 0111 0011 0100 1110 0111 0110 1101 0101 0001

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 2 252 507 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:53 UTC (GMT)
Number 67 117 096 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:53 UTC (GMT)
Number 4 738 746 835 373 285 530 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number 10 842 278 471 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number -12 418 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number 19 935 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number 2.006 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number 630 136 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number -1 505 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
Number 1 093 072 928 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 26 20:52 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100