64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: -7 484 539 350 057 490 799 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -7 484 539 350 057 490 799(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-7 484 539 350 057 490 799| = 7 484 539 350 057 490 799

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 7 484 539 350 057 490 799 ÷ 2 = 3 742 269 675 028 745 399 + 1;
  • 3 742 269 675 028 745 399 ÷ 2 = 1 871 134 837 514 372 699 + 1;
  • 1 871 134 837 514 372 699 ÷ 2 = 935 567 418 757 186 349 + 1;
  • 935 567 418 757 186 349 ÷ 2 = 467 783 709 378 593 174 + 1;
  • 467 783 709 378 593 174 ÷ 2 = 233 891 854 689 296 587 + 0;
  • 233 891 854 689 296 587 ÷ 2 = 116 945 927 344 648 293 + 1;
  • 116 945 927 344 648 293 ÷ 2 = 58 472 963 672 324 146 + 1;
  • 58 472 963 672 324 146 ÷ 2 = 29 236 481 836 162 073 + 0;
  • 29 236 481 836 162 073 ÷ 2 = 14 618 240 918 081 036 + 1;
  • 14 618 240 918 081 036 ÷ 2 = 7 309 120 459 040 518 + 0;
  • 7 309 120 459 040 518 ÷ 2 = 3 654 560 229 520 259 + 0;
  • 3 654 560 229 520 259 ÷ 2 = 1 827 280 114 760 129 + 1;
  • 1 827 280 114 760 129 ÷ 2 = 913 640 057 380 064 + 1;
  • 913 640 057 380 064 ÷ 2 = 456 820 028 690 032 + 0;
  • 456 820 028 690 032 ÷ 2 = 228 410 014 345 016 + 0;
  • 228 410 014 345 016 ÷ 2 = 114 205 007 172 508 + 0;
  • 114 205 007 172 508 ÷ 2 = 57 102 503 586 254 + 0;
  • 57 102 503 586 254 ÷ 2 = 28 551 251 793 127 + 0;
  • 28 551 251 793 127 ÷ 2 = 14 275 625 896 563 + 1;
  • 14 275 625 896 563 ÷ 2 = 7 137 812 948 281 + 1;
  • 7 137 812 948 281 ÷ 2 = 3 568 906 474 140 + 1;
  • 3 568 906 474 140 ÷ 2 = 1 784 453 237 070 + 0;
  • 1 784 453 237 070 ÷ 2 = 892 226 618 535 + 0;
  • 892 226 618 535 ÷ 2 = 446 113 309 267 + 1;
  • 446 113 309 267 ÷ 2 = 223 056 654 633 + 1;
  • 223 056 654 633 ÷ 2 = 111 528 327 316 + 1;
  • 111 528 327 316 ÷ 2 = 55 764 163 658 + 0;
  • 55 764 163 658 ÷ 2 = 27 882 081 829 + 0;
  • 27 882 081 829 ÷ 2 = 13 941 040 914 + 1;
  • 13 941 040 914 ÷ 2 = 6 970 520 457 + 0;
  • 6 970 520 457 ÷ 2 = 3 485 260 228 + 1;
  • 3 485 260 228 ÷ 2 = 1 742 630 114 + 0;
  • 1 742 630 114 ÷ 2 = 871 315 057 + 0;
  • 871 315 057 ÷ 2 = 435 657 528 + 1;
  • 435 657 528 ÷ 2 = 217 828 764 + 0;
  • 217 828 764 ÷ 2 = 108 914 382 + 0;
  • 108 914 382 ÷ 2 = 54 457 191 + 0;
  • 54 457 191 ÷ 2 = 27 228 595 + 1;
  • 27 228 595 ÷ 2 = 13 614 297 + 1;
  • 13 614 297 ÷ 2 = 6 807 148 + 1;
  • 6 807 148 ÷ 2 = 3 403 574 + 0;
  • 3 403 574 ÷ 2 = 1 701 787 + 0;
  • 1 701 787 ÷ 2 = 850 893 + 1;
  • 850 893 ÷ 2 = 425 446 + 1;
  • 425 446 ÷ 2 = 212 723 + 0;
  • 212 723 ÷ 2 = 106 361 + 1;
  • 106 361 ÷ 2 = 53 180 + 1;
  • 53 180 ÷ 2 = 26 590 + 0;
  • 26 590 ÷ 2 = 13 295 + 0;
  • 13 295 ÷ 2 = 6 647 + 1;
  • 6 647 ÷ 2 = 3 323 + 1;
  • 3 323 ÷ 2 = 1 661 + 1;
  • 1 661 ÷ 2 = 830 + 1;
  • 830 ÷ 2 = 415 + 0;
  • 415 ÷ 2 = 207 + 1;
  • 207 ÷ 2 = 103 + 1;
  • 103 ÷ 2 = 51 + 1;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


7 484 539 350 057 490 799(10) =


110 0111 1101 1110 0110 1100 1110 0010 0101 0011 1001 1100 0001 1001 0110 1111(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 62 positions to the left, so that only one non zero digit remains to the left of it:


7 484 539 350 057 490 799(10) =


110 0111 1101 1110 0110 1100 1110 0010 0101 0011 1001 1100 0001 1001 0110 1111(2) =


110 0111 1101 1110 0110 1100 1110 0010 0101 0011 1001 1100 0001 1001 0110 1111(2) × 20 =


1.1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110 0101 1011 11(2) × 262


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 62


Mantissa (not normalized):
1.1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110 0101 1011 11


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


62 + 2(11-1) - 1 =


(62 + 1 023)(10) =


1 085(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 085 ÷ 2 = 542 + 1;
  • 542 ÷ 2 = 271 + 0;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1085(10) =


100 0011 1101(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110 01 0110 1111 =


1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0011 1101


Mantissa (52 bits) =
1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110


The base ten decimal number -7 484 539 350 057 490 799 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0011 1101 - 1001 1111 0111 1001 1011 0011 1000 1001 0100 1110 0111 0000 0110

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 15 244 357 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number 136 318 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number 1 000 321 323.000 022 15 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number 11 263 154 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number -400 351 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number -33 874 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number -24.901 899 999 999 997 703 51 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number 500 665 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number -0.098 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
Number 3 051 981 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 03 08:22 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100